首页> 外文期刊>Engineering Applications of Artificial Intelligence >A sparse extreme learning machine framework by continuous optimization algorithms and its application in pattern recognition
【24h】

A sparse extreme learning machine framework by continuous optimization algorithms and its application in pattern recognition

机译:连续优化算法的稀疏极限学习机框架及其在模式识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its simplicity, rapidity and good generalization performance. In this investigation, based on least-squares estimate (LSE) and least absolute deviation (LAD), we propose four sparse ELM formulations with zero-norm regularization to automatically choose the optimal hidden nodes. Furthermore, we develop two continuous optimization methods to solve the proposed problems respectively. The first is DC (difference of convex functions) approximation approach that approximates the zero-norm by a DC function, and the resulting optimizations are posed as DC programs. The second is an exact penalty technique for zero-norm, and the resulting problems are reformulated as DC programs, and the corresponding DCAs converge finitely. Moreover, the proposed framework is applied directly to recognize the hardness of licorice seeds using near-infrared spectral data. Experiments in different spectral regions illustrate that the proposed approaches can reduce the number of hidden nodes (or output features), while either improve or show no significant difference in generalization compared with the traditional ELM methods and support vector machine (SVM). Experiments on several benchmark data sets demonstrate that the proposed framework is competitive with the traditional approaches in generalization, but selects fewer output features.
机译:极限学习机(ELM)由于其简单性,快速性和良好的泛化性能而在机器学习中显示出巨大的潜力。在这项研究中,基于最小二乘估计(LSE)和最小绝对偏差(LAD),我们提出了四种具有零范数正则化的稀疏ELM公式,以自动选择最佳隐藏节点。此外,我们开发了两种连续的优化方法来分别解决所提出的问题。第一种是DC(凸函数差)逼近方法,该方法通过DC函数逼近零范数,并且将得到的优化结果作为DC程序提出。第二种是针对零范数的精确罚分技术,将产生的问题重新表示为DC程序,并且相应的DCA有限收敛。此外,所提出的框架可直接用于使用近红外光谱数据识别甘草种子的硬度。在不同光谱区域的实验表明,与传统的ELM方法和支持向量机(SVM)相比,所提出的方法可以减少隐藏节点(或输出特征)的数量,而在泛化方面可以改善或没有显着差异。在几个基准数据集上进行的实验表明,该框架在通用化方面与传统方法具有竞争性,但是选择的输出特征却更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号