首页> 外文期刊>Neurocomputing >Multiple kernel locality-constrained collaborative representation-based discriminant projection for face recognition
【24h】

Multiple kernel locality-constrained collaborative representation-based discriminant projection for face recognition

机译:基于多核局部约束的基于协作表示的判别投影用于人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Collaborative representation-based classifier (CRC) has achieved superior classification performance in the field of face recognition. However, the performance of CRC will degrade significantly when facing nonlinear structural data. To address this problem, many kernel CRC (KCRC) methods have been proposed. These methods usually use a predetermined kernel function which is difficult to be selected. In addition, how to select appropriate parameters remains a challenging problem. Hence, multiple kernel technology (MKL) is applied on CRC, which called MK-CRC. However, it only considers the representation errors while ignoring the class label information in the training process. In this paper, we propose a multiple kernel locality-constrained collaborative representation-based classifier (MKLCRC) which is the multiple kernel extension of CRC and considers the local structures of data. Based on the classification rule of MKLCRC, we propose a dimensionality reduction (DR) method called multiple kernel locality-constrained collaborative representation-based discriminant projection (MKLCR-DP). The goal of MKLCR-DP is to learn a projection matrix and a set of kernel weights to generate a low-dimensional subspace where the betweenclass reconstruction errors are maximized and the within-class reconstruction errors are minimized. Thus MKLCRC can achieve better performance in this low-dimensional subspace. The proposed method can be efficiently optimized with the trace ratio optimization. Experiments on AR, extended Yale B, FERET, CMU PIE and LFW face databases demonstrate that our method outperforms related state-of-the-art algorithms. (C) 2018 Elsevier B.V. All rights reserved.
机译:基于协作表示的分类器(CRC)在人脸识别领域取得了出色的分类性能。但是,当面对非线性结构数据时,CRC的性能将大大降低。为了解决这个问题,已经提出了许多内核CRC(KCRC)方法。这些方法通常使用难以选择的预定核函数。另外,如何选择合适的参数仍然是一个具有挑战性的问题。因此,在CRC上应用了多内核技术(MKL),称为MK-CRC。但是,它仅考虑表示错误,而在训练过程中忽略班级标签信息。在本文中,我们提出了一种基于多核局部性约束的基于协作表示的分类器(MKLCRC),它是CRC的多核扩展,并考虑了数据的局部结构。基于MKLCRC的分类规则,我们提出了一种降维(DR)方法,称为多核局部性受限的基于协作表示的判别投影(MKLCR-DP)。 MKLCR-DP的目标是学习一个投影矩阵和一组内核权重,以生成一个低维子空间,在该空间中,类间重构误差最大,而类内重构误差最小。因此MKLCRC可以在此低维子空间中实现更好的性能。利用痕量比优化可以有效地优化提出的方法。在AR,扩展Yale B,FERET,CMU PIE和LFW人脸数据库上进行的实验表明,我们的方法优于相关的最新算法。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号