首页> 外文期刊>Knowledge-Based Systems >Kernel locality-constrained collaborative representation based discriminant analysis
【24h】

Kernel locality-constrained collaborative representation based discriminant analysis

机译:基于核局部约束的协同表示的判别分析

获取原文
获取原文并翻译 | 示例

摘要

Collaborative representation based classifier (CRC) has been successfully applied to pattern classification. However, CRC may not be able to identify the data with highly nonlinear distribution as a linear algorithm. In this paper, we first propose a kernel locality-constrained collaborative representation based classifier (KLCRC). KLCRC is a nonlinear extension of CRC, and it introduces the local structures of data sets into collaborative representation methods. Since the kernel feature space has a very high (or possibly infinite) dimensionality, we present a dimensionality reduction method (termed kernel locality-constrained collaborative representation based discriminant analysis, KLCR-DA) which can fit KLCRC well. KLCR-DA seeks a subspace in which the between-class reconstruction residual of a given data set is maximized and the within-class reconstruction residual is minimized. Hence, KLCRC can achieve better performances in the projected space. Extensive experimental results on AR, the extended Yale B, FERET face image databases and HK PloyU palmprint database show the superiority of KLCR-DA in comparison to the related methods.
机译:基于协作表示的分类器(CRC)已成功应用于模式分类。但是,CRC可能无法将具有高度非线性分布的数据识别为线性算法。在本文中,我们首先提出了一种基于内核局部性约束的基于协作表示的分类器(KLCRC)。 KLCRC是CRC的非线性扩展,它将数据集的局部结构引入协作表示方法中。由于内核特征空间具有很高的维数(或可能是无限大的维数),因此我们提出了一种很好的适合KLCRC的降维方法(称为基于内核局部约束的基于协作表示的判别分析,KLCR-DA)。 KLCR-DA寻找一个子空间,其中给定数据集的类间重构残差最大化,而类内重构残差最小。因此,KLCRC可以在投影空间中获得更好的性能。在AR,扩展的Yale B,FERET人脸图像数据库和HK PloyU掌纹数据库上的大量实验结果表明,与相关方法相比,KLCR-DA具有优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号