首页> 外文期刊>Neurocomputing >Determination of the spread parameter in the Gaussian kernel for classification and regression
【24h】

Determination of the spread parameter in the Gaussian kernel for classification and regression

机译:确定高斯核中的扩散参数以进行分类和回归

获取原文
获取原文并翻译 | 示例

摘要

Based on statistical learning theory, Support Vector Machine (SVM) is a novel type of learning machine, and it contains polynomial, neural network and radial basis function (RBF) as special cases. In the RBF case, the Gaussian kernel is commonly used, while the spread parameter σ in the Gaussian kernel is essential to generalization performance of SVMs. In this paper, determination of a is studied based on discussions of the influence of a on generalization performance. For classification problems, the optimal a can be computed on the basis of Fisher discrimination. And for regression problems, based on scale space theory, we demonstrate the existence of a certain range of a, within which the generalization performance is stable. An appropriate σ within the range can be achieved via dynamic evaluation. In addition, the lower bound of iterating step size of a is given. Simulation results show the effectiveness of the presented method.
机译:基于统计学习理论,支持向量机(SVM)是一种新型的学习机,它包含多项式,神经网络和径向基函数(RBF)作为特例。在RBF情况下,通常使用高斯内核,而高斯内核中的扩展参数σ对于SVM的泛化性能至关重要。在本文中,基于对a对泛化性能的影响的讨论,研究了a的确定。对于分类问题,可以基于Fisher判别来计算最佳a。对于回归问题,基于尺度空间理论,我们证明了存在一定范围的a,在该范围内泛化性能是稳定的。通过动态评估可以在该范围内获得适当的σ。另外,给出了a的迭代步长的下限。仿真结果表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号