首页> 外文期刊>Neurocomputing >Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis
【24h】

Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis

机译:曲线距离的非线性投影:Isomap与曲线距离分析

获取原文
获取原文并翻译 | 示例

摘要

Dimension reduction techniques are widely used for the analysis and visualization of complex sets of data. This paper compares two recently published methods for nonlinear projection: Isomap and Curvilinear Distance Analysis (CDA). Contrarily to the traditional linear PCA, these methods work like multidimensional scaling, by reproducing in the projection space the pairwise distances measured in the data space. However, they differ from the classical linear MDS by the metrics they use and by the way they build the mapping (algebraic or neural). While Isomap relies directly on the traditional MDS, CDA is based on a nonlinear variant of MDS, called Curvilinear Component Analysis (CCA). Although Isomap and CDA share the same metric, the comparison highlights their respective strengths and weaknesses.
机译:降维技术广泛用于复杂数据集的分析和可视化。本文比较了最近发布的两种非线性投影方法:Isomap和曲线距离分析(CDA)。与传统的线性PCA相反,这些方法通过在投影空间中重现在数据空间中测量的成对距离来像多维缩放一样工作。但是,它们与传统线性MDS的区别在于它们使用的度量以及构建映射(代数或神经)的方式。尽管Isomap直接依赖于传统的MDS,但CDA基于MDS的一种非线性变体,称为曲线分量分析(CCA)。尽管Isomap和CDA具有相同的度量标准,但比较突出显示了它们各自的优点和缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号