首页> 外文期刊>Neurocomputing >A sequential algorithm for feed-forward neural networks with optimal coefficients and interacting frequencies
【24h】

A sequential algorithm for feed-forward neural networks with optimal coefficients and interacting frequencies

机译:具有最优系数和相互作用频率的前馈神经网络的顺序算法

获取原文
获取原文并翻译 | 示例

摘要

An algorithm for sequential approximation with optimal coefficients and interacting frequencies (SAOCIF) for feed-forward neural networks is presented. SAOCIF combines two key ideas. The first one is the optimization of the coefficients (the linear part of the approximation). The second one is the strategy to choose the frequencies (the non-linear weights), taking into account the interactions with the previously selected ones. The resulting method combines the locality of sequential approximations, where only one frequency is found at every step, with the globality of non-sequential methods, where every frequency interacts with the others. The idea behind SAOCIF can be theoretically extended to general Hilbert spaces. Experimental results show a very satisfactory performance.
机译:提出了一种用于前馈神经网络的具有最佳系数和相互作用频率的顺序逼近算法(SAOCIF)。 SAOCIF结合了两个关键思想。第一个是系数的优化(近似值的线性部分)。第二种是选择频率(非线性权重)的策略,要考虑到与先前选择的频率之间的相互作用。所得方法将顺序逼近的局部性(其中每个步骤只能找到一个频率)与非顺序方法的全局性(其中每个频率与其他频率相互作用)相结合。从理论上讲,SAOCIF的思想可以扩展到一般的希尔伯特空间。实验结果显示出非常令人满意的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号