首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Random Sampler M-Estimator Algorithm With Sequential Probability Ratio Test for Robust Function Approximation Via Feed-Forward Neural Networks
【24h】

Random Sampler M-Estimator Algorithm With Sequential Probability Ratio Test for Robust Function Approximation Via Feed-Forward Neural Networks

机译:通过前馈神经网络的随机采样器M-估计器算法与顺序概率比测试,用于鲁棒函数逼近

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of fitting a functional model to data corrupted with outliers using a multilayered feed-forward neural network. Although it is of high importance in practical applications, this problem has not received careful attention from the neural network research community. One recent approach to solving this problem is to use a neural network training algorithm based on the random sample consensus (RANSAC) framework. This paper proposes a new algorithm that offers two enhancements over the original RANSAC algorithm. The first one improves the algorithm accuracy and robustness by employing an M-estimator cost function to decide on the best estimated model from the randomly selected samples. The other one improves the time performance of the algorithm by utilizing a statistical pretest based on Wald's sequential probability ratio test. The proposed algorithm is successfully evaluated on synthetic and real data, contaminated with varying degrees of outliers, and compared with existing neural network training algorithms.
机译:本文解决了使用多层前馈神经网络将功能模型拟合到具有异常值的数据的问题。尽管它在实际应用中具有很高的重要性,但是这个问题尚未得到神经网络研究界的认真关注。解决此问题的一种最新方法是使用基于随机样本共识(RANSAC)框架的神经网络训练算法。本文提出了一种新算法,该算法相对于原始RANSAC算法提供了两个增强。第一个通过使用M估计器成本函数从随机选择的样本中确定最佳估计模型来提高算法的准确性和鲁棒性。另一个通过利用基于Wald的顺序概率比检验的统计预检验来改善算法的时间性能。该算法在合成数据和真实数据上得到了成功评估,并被不同程度的离群值污染,并与现有的神经网络训练算法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号