首页> 外文期刊>Neurocomputing >Adaptive RBF neural-networks control for a class of time-delay nonlinear systems
【24h】

Adaptive RBF neural-networks control for a class of time-delay nonlinear systems

机译:一类时滞非线性系统的自适应RBF神经网络控制

获取原文
获取原文并翻译 | 示例

摘要

A control scheme combined with backstepping, radius basis function (RBF) neural networks and adaptive control is proposed for the stabilization of nonlinear system with input and state delay. By using state transformation, the original system is converted to the system without input delay. The RBF neural network is employed to estimate the unknown continuous function. The controller is designed for the converted system so that the closed-loop system is bounded. According to the relation between the original system and the converted one, the state of the original system is proved to be bounded. The control scheme ensures that the closed-loop system is semi-globally uniformly ultimately bounded.
机译:提出了一种结合逆推,半径基函数(RBF)神经网络和自适应控制的控制方案,以控制具有输入和状态延迟的非线性系统的稳定性。通过使用状态转换,原始系统将转换为无输入延迟的系统。 RBF神经网络用于估计未知连续函数。控制器是为转换后的系统设计的,因此有界的闭环系统。根据原始系统与转换后系统之间的关系,证明原始系统的状态是有界的。该控制方案确保闭环系统最终在半全局统一范围内有界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号