首页> 外文期刊>Neurocomputing >Simplified Neural Networks Algorithm For Function Approximation On Discrete Input Spaces In High Dimension-limited Sample Applications
【24h】

Simplified Neural Networks Algorithm For Function Approximation On Discrete Input Spaces In High Dimension-limited Sample Applications

机译:高维受限样本应用中离散输入空间上函数逼近的简化神经网络算法

获取原文
获取原文并翻译 | 示例

摘要

Unlike the conventional fully connected feedforward multilayer neural networks for approximating functions on continuous input spaces, this paper investigates simplified neural networks (which use a common linear function in the hidden layer) for approximating functions on discrete input spaces. By developing the corresponding learning algorithms and testing with different data sets, it is shown that, comparing conventional multilayer neural networks for approximating functions on discrete input spaces, the proposed simplified neural network architecture and algorithms can achieve similar or better approximation accuracy especially when dealing with high dimensional-low sample cases, but with a much simpler architecture and less parameters.
机译:与用于连续输入空间上函数逼近的常规全连接前馈多层神经网络不同,本文研究了用于离散输入空间上函数逼近的简化神经网络(在隐藏层中使用公共线性函数)。通过开发相应的学习算法并使用不同的数据集进行测试,结果表明,与传统的多层神经网络在离散输入空间上逼近函数的方法相比,所提出的简化神经网络架构和算法可以实现相似或更高的逼近精度,尤其是在处理高尺寸,低样本的案例,但架构简单得多,参数更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号