首页> 外文期刊>Neurocomputing >A new learning algorithm with logarithmic performance index for complex-valued neural networks
【24h】

A new learning algorithm with logarithmic performance index for complex-valued neural networks

机译:复数值神经网络具有对数性能指标的新学习算法

获取原文
获取原文并翻译 | 示例

摘要

In a fully complex-valued feed-forward network, the convergence of the Complex-valued Back Propagation (CBP) learning algorithm depends on the choice of the activation function, learning sample distribution, minimization criterion, initial weights and the learning rate. The minimization criteria used in the existing versions of CBP learning algorithm in the literature do not approximate the phase of complex-valued output well in function approximation problems. The phase of a complex-valued output is critical in telecommunication and reconstruction and source localization problems in medical imaging applications. In this paper, the issues related to the convergence of complex-valued neural networks are clearly enumerated using a systematic sensitivity study on existing complex-valued neural networks. In addition, we also compare the performance of different types of split complex-valued neural networks. From the observations in the sensitivity analysis, we propose a new CBP learning algorithm with logarithmic performance index for a complex-valued neural network with exponential activation function. The proposed CBP learning algorithm directly minimizes both the magnitude and phase errors and also provides better convergence characteristics. Performance of the proposed scheme is evaluated using two synthetic complex-valued function approximation problems, the complex XOR problem, and a non-minimum phase equalization problem. Also, a comparative analysis on the convergence of the existing fully complex and split complex networks is presented.
机译:在完全复数值前馈网络中,复数值反向传播(CBP)学习算法的收敛取决于激活函数,学习样本分布,最小化准则,初始权重和学习率的选择。现有的CBP学习算法版本中使用的最小化标准在函数逼近问题中不能很好地逼近复值输出的相位。复数值输出的相位对于医学成像应用中的电信和重建以及源定位问题至关重要。在本文中,通过对现有复杂值神经网络的系统敏感性研究,清楚地列举了与复杂值神经网络的收敛有关的问题。此外,我们还比较了不同类型的分裂复数值神经网络的性能。从敏感性分析中的观察结果出发,针对具有指数激活函数的复值神经网络,提出了一种新的具有对数性能指标的CBP学习算法。所提出的CBP学习算法直接最小化幅度和相位误差,并提供更好的收敛特性。使用两个合成的复值函数逼近问题,复杂的XOR问题和非最小相位均衡问题来评估所提出方案的性能。此外,对现有的完全复杂和分裂复杂网络的收敛性进行了比较分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号