首页> 外文期刊>Neurocomputing >Nonlinear dynamic system identification using pipelined functional link artificial recurrent neural network
【24h】

Nonlinear dynamic system identification using pipelined functional link artificial recurrent neural network

机译:基于流水线功能链接的人工递归神经网络的非线性动态系统辨识

获取原文
获取原文并翻译 | 示例

摘要

A computationally efficient pipelined functional link artificial recurrent neural network (PFLARNN) is proposed for nonlinear dynamic system identification using a modification real-time recurrent learning (RTRL) algorithm in this paper. In contrast to a feedforward artificial neural network (such as a functional link artificial neural network (FLANN)), the proposed PFLARNN consists of a number of simple small-scale functional link artificial recurrent neural network (FLARNN) modules. Since those modules of PFLARNN can be performed simultaneously in a pipelined parallelism fashion, this would result in a significant improvement in its total computational efficiency. Moreover, nonlinearity of each module is introduced by enhancing the input pattern with nonlinear functional expansion. Therefore, the performance of the proposed filter can be further improved. Computer simulations demonstrate that with proper choice of functional expansion in the PFLARNN, this filter performs better than the FLANN and multilayer perceptron (MLP) for nonlinear dynamic system identification.
机译:提出了一种基于改进的实时递归学习(RTRL)算法的高效计算流水线功能链接人工递归神经网络(PFLARNN),用于非线性动态系统辨识。与前馈人工神经网络(例如功能链接人工神经网络(FLANN))相反,所提出的PFLARNN由许多简单的小规模功能链接人工递归神经网络(FLARNN)模块组成。由于PFLARNN的那些模块可以以流水线并行方式同时执行,因此这将导致其总计算效率的显着提高。此外,通过使用非线性功能扩展增强输入模式,可以引入每个模块的非线性。因此,可以进一步提高所提出的滤波器的性能。计算机仿真表明,通过适当选择PFLARNN中的功能扩展,该滤波器的性能要优于FLANN和多层感知器(MLP)来进行非线性动态系统识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号