首页> 外文期刊>Neurocomputing >Generalized N-dimensional principal component analysis (GND-PCA) and its application on construction of statistical appearance models for medical volumes with fewer samples
【24h】

Generalized N-dimensional principal component analysis (GND-PCA) and its application on construction of statistical appearance models for medical volumes with fewer samples

机译:广义N维主成分分析(GND-PCA)及其在样本量较少的医学量统计外观模型构建中的应用

获取原文
获取原文并翻译 | 示例

摘要

We propose a method called generalized N-dimensional principal component analysis (GND-PCA) for the modeling of a series of multi-dimensional data in this paper. In this method, the data are directly trained as the higher-order tensor and the bases in each mode subspace are calculated to compactly represent the data. Since GND-PCA analyzes the multi-dimensional data directly on each mode subspace rather than the unfolded 1D vector space, it can not only be calculated efficiently but also have better performance on generalization than PCA. Additionally, since GND-PCA can compress the data in each mode subspace, it can represent the data more efficiently, compared to the recently proposed ND-PCA method. We apply the proposed GND-PCA method to construct the appearance models for 18 MR T1-weighted brain volumes and 25 CT lung volumes, respectively. The leave-one-out experiments show that the statistical appearance models built by our method can represent an untrained data well even though the models are trained by fewer samples.
机译:在本文中,我们提出了一种称为广义N维主成分分析(GND-PCA)的方法,用于对一系列多维数据进行建模。在这种方法中,数据被直接训练为高阶张量,并且计算每个模式子空间中的基数以紧凑地表示数据。由于GND-PCA直接在每个模式子空间而不是展开的1D向量空间上分析多维数据,因此它不仅可以高效地进行计算,而且在泛化方面也比PCA更好。另外,由于GND-PCA可以压缩每个模式子空间中的数据,所以与最近提出的ND-PCA方法相比,它可以更有效地表示数据。我们应用提出的GND-PCA方法分别为18个MR T1加权脑体积和25个CT肺体积构建外观模型。留一法的实验表明,即使使用更少的样本对模型进行训练,我们的方法所建立的统计外观模型也可以很好地表示未经训练的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号