首页> 外文期刊>Neurocomputing >Efficient online recurrent connectionist learning with the ensemble Kalman filter
【24h】

Efficient online recurrent connectionist learning with the ensemble Kalman filter

机译:使用集成卡尔曼滤波器进行有效的在线循环连接主义学习

获取原文
获取原文并翻译 | 示例

摘要

One of the main drawbacks for online learning of recurrent neural networks (RNNs) is the high computational cost of training. Much effort has been spent to reduce the computational complexity of online learning algorithms, usually focusing on the real time recurrent learning (RTRL) algorithm. Significant reductions in complexity of RTRL have been achieved, but with a tradeoff, degradation of model performance. We take a different approach to complexity reduction in online learning of RNNs through a sequential Bayesian filtering framework and propose the ensemble Kalman filter (EnKF) for derivative free parameter estimation. The EnKF provides an online training solution that under certain assumptions can reduce the computational complexity by two orders of magnitude from the original RTRL algorithm without sacrificing the modeling potential of the network. Through forecasting experiments on observed data from nonlinear systems, it is shown that the EnKF trained RNN outperforms other RNN training algorithms in terms of real computational time and also leads to models that produce better forecasts.
机译:在线学习递归神经网络(RNN)的主要缺点之一是训练的高计算成本。为了降低在线学习算法的计算复杂度,已经进行了很多努力,通常集中在实时循环学习(RTRL)算法上。已经实现了RTRL复杂性的显着降低,但存在折衷,即模型性能下降。我们采用不同的方法通过顺序贝叶斯滤波框架来降低RNN在线学习的复杂度,并提出了集成卡尔曼滤波器(EnKF)用于无导数参数估计。 EnKF提供了一种在线培训解决方案,在某些假设下,可以在不牺牲网络建模潜力的情况下,将计算复杂性从原始RTRL算法降低两个数量级。通过对来自非线性系统的观测数据进行预测实验,表明在实时计算时间方面,EnKF训练的RNN优于其他RNN训练算法,并且可以生成能够产生更好预测的模型。

著录项

  • 来源
    《Neurocomputing》 |2010年第6期|1024-1030|共7页
  • 作者单位

    Department of Computing, Goldsmiths College, University of London, New Cross, London SE14 6NW, UK;

    Department of Computing, Goldsmiths College, University of London, New Cross, London SE14 6NW, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    recurrent neural networks; ensemble Kalman filter;

    机译:递归神经网络集成卡尔曼滤波器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号