首页> 外文期刊>Neurocomputing >Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks
【24h】

Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks

机译:残差分析方法的混合Elman-NARX神经网络预测混沌时间序列

获取原文
获取原文并翻译 | 示例

摘要

Residual analysis using hybrid Elman-NARX neural network along with embedding theorem is used to analyze and predict chaotic time series. Using embedding theorem, the embedding parameters are determined and the time series is reconstructed into proper phase space points. The embedded phase space points are fed into an Elman neural network and trained. The residual of predicted time series is analyzed, and it was observed that residuals demonstrate chaotic behaviour. The residuals are considered as a new chaotic time series and reconstructed according to embedding theorem. A new Elman neural network is trained to predict the future value of the residual time series. The residual analysis is repeated several times. Finally, a NARX network is used to capture the relationship among the predicted value of original time series and residuals and original time series. The method is applied to Mackey-Glass and Lorenz equations which produce chaotic time series, and to a real life chaotic time series, Sunspot time series, to evaluate the validity of the proposed technique. Numerical experimental results confirm that the proposed method can predict the chaotic time series more effectively and accurately when compared with the existing prediction methods.
机译:使用混合Elman-NARX神经网络和嵌入定理进行残差分析,以分析和预测混沌时间序列。使用嵌入定理,确定嵌入参数,并将时间序列重构为适当的相空间点。嵌入的相空间点被馈入Elman神经网络并进行训练。分析了预测时间序列的残差,并且观察到残差表现出混沌行为。残差被视为一个新的混沌时间序列,并根据嵌入定理进行重构。训练了新的Elman神经网络以预测残差时间序列的未来值。残留分析重复几次。最后,使用NARX网络捕获原始时间序列的预测值与残差和原始时间序列之间的关系。该方法适用于产生混沌时间序列的Mackey-Glass和Lorenz方程,以及现实生活中的混沌时间序列Sunspot时间序列,以评估该技术的有效性。数值实验结果表明,与现有的预测方法相比,该方法可以更有效,更准确地预测混沌时间序列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号