首页> 外文期刊>Neurocomputing >Non-uniform multiple kernel learning with cluster-based gating functions
【24h】

Non-uniform multiple kernel learning with cluster-based gating functions

机译:具有基于集群的选通功能的非均匀多核学习

获取原文
获取原文并翻译 | 示例

摘要

Recently, multiple kernel learning (MKL) has gained increasing attention due to its empirical superiority over traditional single kernel based methods. However, most of state-of-the-art MKL methods are "uniform" in the sense that the relative weights of kernels keep fixed among all data. Here we propose a "non-uniform" MKL method with a data-dependent gating mechanism, i.e., adaptively determine the kernel weights for the samples. We utilize a soft clustering algorithm and then tune the weight for each cluster under the graph embedding (GE) framework. The idea of exploiting cluster structures is based on the observation that data from the same cluster tend to perform consistently, which thus increases the resistance to noises and results in more reliable estimate. Moreover, it is computationally simple to handle out-of-sample data, whose implicit RKHS representations are modulated by the posterior to each cluster. Quantitative studies between the proposed method and some representative MKL methods are conducted on both synthetic and widely used public data sets. The experimental results well validate its superiorities.
机译:近来,由于多核学习(MKL)在经验上优于传统的基于单核的方法,因此受到越来越多的关注。但是,大多数最新的MKL方法在所有数据之间内核的相对权重保持固定的意义上是“统一的”。在这里,我们提出了一种“非均匀” MKL方法,该方法具有依赖于数据的门控机制,即自适应确定样本的核权重。我们利用软聚类算法,然后在图嵌入(GE)框架下调整每个聚类的权重。利用群集结构的想法是基于这样的观察,即来自同一群集的数据趋于一致地执行,因此增加了抗噪声能力并导致更可靠的估计。此外,处理样本外数据的计算简单,其隐式RKHS表示由每个聚类的后部调制。在合成方法和广泛使用的公共数据集上,对所提出的方法和一些代表性的MKL方法进行了定量研究。实验结果很好地证明了其优越性。

著录项

  • 来源
    《Neurocomputing》 |2011年第7期|p.1095-1101|共7页
  • 作者

    Yadong Mu; BingfengZhou;

  • 作者单位

    Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore, Singapore,Institute of Computer Science and Technology, Peking University, Beijing 100871, PR China;

    Institute of Computer Science and Technology, Peking University, Beijing 100871, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    kernel based learning; multi-kernel learning; graph embedding;

    机译:基于核的学习;多核学习;图形嵌入;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号