首页> 外文期刊>Neurocomputing >A hierarchical /c-means clustering based fingerprint quality classification
【24h】

A hierarchical /c-means clustering based fingerprint quality classification

机译:基于分层/ c-均值聚类的指纹质量分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel technique that employs a hierarchical fc-means clustering for quality based classification of fingerprints for subsequent improvement in fingerprint matching results. A set of statistical and frequency features have been calculated from a fingerprint image. A hierarchical k-means clustering algorithm has been utilized to classify the fingerprint image into one of four quality classes, i.e. good, dry, normal or wet. An objective method has also been proposed to evaluate the performance of fingerprint quality classification. It has been shown through experimental results that the performance of minutiae based matcher improves when the quality of fingerprint image is incorporated in the matching stage. The false accept rate and false reject rate of minutiae based fingerprint matcher are 1.8 on FVC 2002 dbL database without utilizing fingerprint quality information. False accept rate has been reduced from 1.8 to 0.79 whereas the false reject rate is at 1.8 when fingerprint quality based threshold value is utilized. This significant improvement in the performance of the fingerprint matching system shows the effectiveness of hierarchical k-means clustering technique in quality based classification of fingerprints.
机译:本文提出了一种新技术,该技术采用分层fc-means聚类对基于质量的指纹进行分类,以随后改善指纹匹配结果。已从指纹图像计算出一组统计和频率特征。已经使用分层的k均值聚类算法将指纹图像分类为四个质量类别之一,即良好,干燥,正常或潮湿。还提出了一种客观的方法来评估指纹质量分类的性能。通过实验结果表明,当在匹配阶段结合指纹图像的质量时,基于细节的匹配器的性能会提高。在不使用指纹质量信息的情况下,基于细节的指纹匹配器的错误接受率和错误拒绝率在FVC 2002 dbL数据库上为1.8。当使用基于指纹质量的阈值时,错误接受率已从1.8降低到0.79,而错误拒绝率是1.8。指纹匹配系统性能的显着提高表明,在基于质量的指纹分类中,分层k均值聚类技术是有效的。

著录项

  • 来源
    《Neurocomputing》 |2012年第2012期|p.62-67|共6页
  • 作者单位

    Department of Computer Engineering, College of Electrical & Mechanical Engineering, National University of Sciences and Technology (NUST), Peshawar Road, Rawalpindi, Pakistan;

    Department of Computer Engineering, College of Electrical & Mechanical Engineering, National University of Sciences and Technology (NUST), Peshawar Road, Rawalpindi, Pakistan;

    Department of Computer Engineering, College of Electrical & Mechanical Engineering, National University of Sciences and Technology (NUST), Peshawar Road, Rawalpindi, Pakistan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biometrics; Fingerprint matching; k-means clustering; Quality classification;

    机译:生物识别;指纹匹配;k均值聚类;质量分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号