首页> 外文期刊>Image and Vision Computing >Two-stage quality adaptive fingerprint image enhancement using Fuzzy C-means clustering based fingerprint quality analysis
【24h】

Two-stage quality adaptive fingerprint image enhancement using Fuzzy C-means clustering based fingerprint quality analysis

机译:基于模糊C均值聚类的指纹质量分析两阶段质量自适应指纹图像增强

获取原文
获取原文并翻译 | 示例

摘要

Fingerprint recognition techniques are dependent on the quality of fingerprint images. An efficient enhancement algorithm improves the performance of recognition algorithms for poor quality images. Performance improvement of the recognition algorithms will be more if the enhancement process is adaptive to the fingerprint qualities (wet, dry or normal). In this paper, a quality adaptive fingerprint enhancement algorithm is proposed. The proposed fingerprint quality assessment (FQA) algorithm assigns the appropriate quality class of dry, wet, normal dry, normal wet, and good quality using Fuzzy C-means clustering technique to each fingerprint image. It considers seven features namely, mean, moisture, variance, uniformity, contrast, ridge valley area uniformity (RVAU), and ridge valley uniformity (RVU) to cluster the fingerprint images into suitable quality class. Fingerprint images of each quality class undergo through a two-stage fingerprint quality enhancement (FQE) process. In the first stage, a quality adaptive preprocessing (QAP) method is used to preprocess the fingerprint images. Next, fingerprint images are enhanced with Gabor, short-term Fourier transform (SIFT), and oriented diffusion filtering (ODF) based enhancement techniques in the second stage. Experimental evaluations are performed on a quality driven database of FVC 2004. Results show that the performance improvement of 1.54% to 50.62% for NBIS matcher and 1.66% to 8.95% for VeriFinger matcher are achieved while the QAP based approaches are used in comparison to the current state-of-the-art enhancement techniques. In addition, the experimentation is also performed on FVC 2002 database to validate the robustness and efficacy of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
机译:指纹识别技术取决于指纹图像的质量。一种有效的增强算法可提高针对劣质图像的识别算法的性能。如果增强过程适应指纹质量(湿,干或正常),则识别算法的性能改进将更加出色。本文提出了一种质量自适应的指纹增强算法。拟议的指纹质量评估(FQA)算法使用模糊C均值聚类技术为每个指纹图像分配适当的质量类别,包括干,湿,正常干,正常湿和良好质量。它考虑了七个特征,即均值,湿度,方差,均匀性,对比度,谷区域均匀性(RVAU)和谷均匀性(RVU),以将指纹图像聚类为合适的质量等级。每个质量等级的指纹图像都经过两阶段的指纹质量增强(FQE)过程。在第一阶段,使用质量自适应预处理(QAP)方法对指纹图像进行预处理。接下来,在第二阶段,使用Gabor,短期傅立叶变换(SIFT)和基于定向扩散滤波(ODF)的增强技术增强指纹图像。在FVC 2004的质量驱动数据库上进行了实验评估。结果表明,与基于QAP的方法相比,使用NBSP匹配器的性能提高了1.54%至50.62%,对于VeriFinger匹配器的性能提高了1.66%至8.95%。当前最先进的增强技术。此外,还对FVC 2002数据库进行了实验,以验证所提出方法的鲁棒性和有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号