首页> 外文期刊>Neurocomputing >Nonlinear system identification with continuous piecewise linear neural network
【24h】

Nonlinear system identification with continuous piecewise linear neural network

机译:连续分段线性神经网络的非线性系统辨识

获取原文
获取原文并翻译 | 示例

摘要

This paper considers system identification using domain partition based continuous piecewise linear neural network (DP-CPLNN), which is newly proposed. DP-CPLNN has the capability of representing any continuous piecewise linear (CPWL) function, hence its identification performance can be expected. Another attractive feature of DP-CPLNN is the geometrical property of its parameters. Applying this property, this paper proposes an identification method including domain partition and parameter training. In numerical experiments, DP-CPLNN with this method outperforms hinging hyperplanes and high-level canonical piecewise linear representation, which are two widely used CPWL models, showing the flexibility of DP-CPLNN and the effectiveness of the proposed algorithm in nonlinear identification.
机译:本文基于新提出的基于域划分的连续分段线性神经网络(DP-CPLNN)来考虑系统识别。 DP-CPLNN具有表示任何连续分段线性(CPWL)函数的能力,因此可以期望其识别性能。 DP-CPLNN的另一个吸引人的特点是其参数的几何特性。利用这一特性,本文提出了一种包括域划分和参数训练的识别方法。在数值实验中,采用这种方法的DP-CPLNN优于铰接超平面和高级规范分段线性表示法,后者是两种广泛使用的CPWL模型,显示了DP-CPLNN的灵活性以及所提算法在非线性识别中的有效性。

著录项

  • 来源
    《Neurocomputing》 |2012年第1期|p.167-177|共11页
  • 作者单位

    Department of Automation, Tsinghua University, Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing 100084, PR China;

    Department of Automation, Tsinghua University, Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing 100084, PR China;

    Department of Automation, Tsinghua University, Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing 100084, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    piecewise linear neural network; domain partition; nonlinear system identification;

    机译:分段线性神经网络域划分非线性系统辨识;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号