首页>
外文OA文献
>Identification and control of continuous-time nonlinear systems via dynamic neural networks
【2h】
Identification and control of continuous-time nonlinear systems via dynamic neural networks
展开▼
机译:基于动态神经网络的连续时间非线性系统辨识与控制
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
In this paper, we present an algorithm for the online identification and adaptive control of a class of continuous-time nonlinear systems via dynamic neural networks. The plant considered is an unknown multi-input/multi-output continuous-time higher order nonlinear system. The control scheme includes two parts: a dynamic neural network is employed to perform system identification and a controller based on the proposed dynamic neural network is developed to track a reference trajectory. Stability analysis for the identification and the tracking errors is performed by means of Lyapunov stability criterion. Finally, we illustrate the effectiveness of these methods by computer simulations of the Duffing chaotic system and one-link rigid robot manipulator. The simulation results demonstrate that the model-based dynamic neural network control scheme is appropriate for control of unknown continuous-time nonlinear systems with output disturbance noise.
展开▼