首页> 外文期刊>Neurocomputing >Wavelet packet energy, Tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions
【24h】

Wavelet packet energy, Tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions

机译:小波包能量,Tsallis熵和统计参数化,用于基于支持向量和基于神经的乳腺X线摄影区域分类

获取原文
获取原文并翻译 | 示例

摘要

This work develops a support vector and neural-based classification of mammographic regions by applying statistical, wavelet packet energy and Tsallis entropy parameterization. From the first four wavelet packet decomposition levels, four different feature sets were evaluated using two-sample Kolmogorov-Smirnov test (KS-test) and, in one case, principal component analysis (PCA). Feature selection was performed applying a hybrid scheme integrating non-parametric KS-test, correlation analysis, a logistic regression (LR) model and sequential forward selection (SFS). The top selected features (depending on the selected wavelet decomposition level) produced the best classification performances in comparison to other well-known feature selection methods. The classification of the data was carried out using several support vector machine (SVM) schemes and multi-layer perceptron (MLP) neural networks. The new set of features improved significantly the classification performance of mammographic regions using conventional SVMs and MLPs.
机译:这项工作通过应用统计,小波包能量和Tsallis熵参数化技术,开发了一种乳房X线摄影区域的支持向量和基于神经的分类。在前四个小波包分解级别中,使用两个样本的Kolmogorov-Smirnov检验(KS检验)以及在一种情况下的主成分分析(PCA)评估了四个不同的特征集。使用混合方案执行特征选择,该方案集成了非参数KS检验,相关分析,逻辑回归(LR)模型和顺序正向选择(SFS)。与其他众所周知的特征选择方法相比,最优先选择的特征(取决于选择的小波分解级别)产生了最佳的分类性能。使用几种支持向量机(SVM)方案和多层感知器(MLP)神经网络对数据进行分类。使用传统的SVM和MLP,新的功能集显着改善了乳腺X线摄影区域的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号