首页> 外文期刊>Neurocomputing >Efficient representation and feature extraction for neural network-based 3D object pose estimation
【24h】

Efficient representation and feature extraction for neural network-based 3D object pose estimation

机译:基于神经网络的3D对象姿态估计的有效表示和特征提取

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces an efficient representation and feature extraction technique for 3D pose estimation of objects, incorporating a novel mechanism for the exploitation of the extracted visual cues. A combination of a fuzzy clustering technique for the input space, with supervised learning, results in a problem of reduced dimensionality and an efficient mapping of the input-output space. While other neural network-based approaches for 3D pose estimation focus on reducing dimensionality based on input space characteristics, such as with PCA-based approaches, the proposed scheme directly targets the input-output mapping, based on the available visual data. Evaluation results provide evidence of low generalization error when estimating the 3D pose of objects, with the best performance achieved when employing Radial Basis Functions. The proposed system can be adopted in several computer vision applications requiring object localization, pose estimation and target tracking.
机译:本文介绍了一种用于物体的3D姿态估计的有效表示和特征提取技术,并结合了一种新颖的机制来利用提取的视觉提示。针对输入空间的模糊聚类技术与监督学习的结合,导致了维数减少和输入-输出空间的有效映射的问题。虽然其他基于神经网络的3D姿态估计方法着重于基于输入空间特征的降维,例如基于PCA的方法,但该方案基于可用的可视数据直接针对输入-输出映射。评估结果提供了在估计对象的3D姿态时泛化误差较低的证据,并且在采用径向基函数时可获得最佳性能。所提出的系统可以在需要对象定位,姿态估计和目标跟踪的几种计算机视觉应用中采用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号