首页> 外文期刊>Neurocomputing >Position-wise contextual advertising: Placing relevant ads at appropriate positions of a web page
【24h】

Position-wise contextual advertising: Placing relevant ads at appropriate positions of a web page

机译:位置相关的上下文广告:将相关广告放置在网页的适当位置

获取原文
获取原文并翻译 | 示例

摘要

Web advertising, a form of online advertising, which uses the Internet as a medium to post product or service information and attract customers, has become one of the most important marketing channels. As one prevalent type of web advertising, contextual advertising refers to the placement of the most relevant ads at appropriate positions of a web page, so as to provide a better user experience and increase the user's ad-click rate. However, most existing contextual advertising techniques only take into account how to select as relevant ads for a given page as possible, without considering the positional effect of the ad placement on the page, resulting in an unsatisfactory performance in ad local context relevance. In this paper, we address the novel problem of position-wise contextual advertising, i.e., how to select and place relevant ads properly for a target web page. In our proposed approach, the relevant ads are selected based on not only global context relevance but also local context relevance, so that the embedded ads yield contextual relevance to both the whole target page and the insertion positions where the ads are placed. In addition, to improve the accuracy of global and local context relevance measure, the rich wikipedia knowledge is used to enhance the semantic feature representation of pages and ad candidates. Last, we evaluate our approach using a set of ads and pages downloaded from the Internet, and demonstrate the effectiveness of our approach.
机译:Web广告是一种在线广告形式,它使用Internet作为发布产品或服务信息并吸引客户的媒介,已经成为最重要的营销渠道之一。作为网络广告的一种普遍类型,上下文广告是指将最相关的广告放置在网页的适当位置,以便提供更好的用户体验并提高用户的广告点击率。但是,大多数现有的上下文广告技术仅考虑如何为给定页面选择尽可能相关的广告,而没有考虑广告在页面上的位置影响,从而导致广告本地上下文相关性的表现不尽人意。在本文中,我们解决了位置相关的上下文广告的新问题,即,如何为目标网页正确选择和放置相关广告。在我们提出的方法中,不仅基于全局上下文相关性而且还基于本地上下文相关性来选择相关广告,从而使嵌入式广告对整个目标页面和放置广告的插入位置都产生上下文相关性。此外,为了提高全局和局部上下文相关性度量的准确性,丰富的Wikipedia知识用于增强页面和候选广告的语义特征表示。最后,我们使用从Internet下载的一组广告和页面来评估我们的方法,并证明该方法的有效性。

著录项

  • 来源
    《Neurocomputing》 |2013年第23期|524-535|共12页
  • 作者单位

    Wenzhou University, Wenzhou 325035, Zhejiang, China,University of Science and Technology of China, Hefei 230026, Anhui, China;

    University of Technology, Sydney, Australia;

    Wenzhou University, Wenzhou 325035, Zhejiang, China,Northwestern Polytechnical University, Xi'an 710072, China;

    University of Science and Technology of China, Hefei 230026, Anhui, China;

    Victoria University, Melbourne, Australia;

    Institute of Science and Technology Information of Zhejiang Province, Hangzhou 310006, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wikipedia knowledge; Similarity; Contextual advertising;

    机译:维基百科知识;相似;内容相关广告;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号