首页> 外文期刊>Neurocomputing >PSO-based dimension reduction of EEG recordings: Implications for subject transfer in BCI
【24h】

PSO-based dimension reduction of EEG recordings: Implications for subject transfer in BCI

机译:基于PSO的EEG记录降维:对BCI中的主题转移的启示

获取原文
获取原文并翻译 | 示例

摘要

Subject transfer is a growing area of research in EEG aiming to address the lack of having enough EEG samples required for BCI by using samples originating from individuals or groups of subjects that previously performed similar tasks. This paper investigates the feasibility of two frameworks for enhancing subject transfer through a 90%+ reduction of EEG features and electrodes using Particle Swarm Optimization (PSO). In the first framework, electrodes and features selected by PSO from individual subjects are combined into a single "meta-mask" to be applied to the new subject. In the second framework, the preprocessed EEG of multiple subjects is concatenated into a single "super subject", from which PSO selects electrodes and features for use on the new subject. The study is focused on finding the optimal mixture of subjects in either of the proposed frameworks in addition to investigating the impact of various electrode and features selections. The results indicate the important role of having an optimal mixture of expertise in the subjects' data.
机译:受试者转移是脑电图研究的一个不断发展的领域,旨在通过使用源自以前执行过类似任务的个体或受试者组的样本来解决缺乏BCI所需的足够脑电图样本的问题。本文研究了使用粒子群优化(PSO)通过减少90%以上的EEG特征和电极来增强受试者转移的两个框架的可行性。在第一个框架中,由PSO从各个主题中选择的电极和特征被组合到单个“元蒙版”中,以应用于新主题。在第二个框架中,将多个主题的预处理EEG连接到单个“超级主题”中,PSO从中选择用于新主题的电极和特征。除了研究各种电极和特征选择的影响外,研究的重点还在于在两个提议的框架中找到最佳的对象混合。结果表明,在受试者的数据中具有最佳的专业知识组合非常重要。

著录项

  • 来源
    《Neurocomputing》 |2013年第7期|319-331|共13页
  • 作者单位

    School of Computer Science, Engineering, and Mathematics (CSEM), Flinders University, Adelaide, South Australia Australia;

    School of Computer Science, Engineering, and Mathematics (CSEM), Flinders University, Adelaide, South Australia Australia;

    School of Computer Science, Engineering, and Mathematics (CSEM), Flinders University, Adelaide, South Australia Australia,Beijing Municipal Lab for Multimedia & Intelligent Software, Beijing University of Technology, Beijing, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Particle swarm optimization; Electroencephalogram; Brain computer interface; Subject transfer; Dimension reduction;

    机译:粒子群优化;脑电图脑电脑接口;主题转移;尺寸缩小;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号