首页> 外文期刊>Concurrency and computation: practice and experience >Emotion detection from EEG recordings based on supervised and unsupervised dimension reduction
【24h】

Emotion detection from EEG recordings based on supervised and unsupervised dimension reduction

机译:基于监督和无监督降维的EEG记录中的情感检测

获取原文
获取原文并翻译 | 示例

摘要

In recent years, researchers have been trying to detect human emotions from recorded brain signalssuch as electroencephalogram (EEG) signals. However, due to the high levels of noise fromthe EEG recordings, a single feature alone cannot achieve good performance. A combination ofdistinct features is the key for automatic emotion detection. In this paper, we present a hybriddimension feature reduction scheme using a total of 14 different features extracted from EEGrecordings. The scheme combines these distinct features in the feature space using both supervisedand unsupervised feature selection processes. Maximum Relevance Minimum Redundancy(mRMR) is applied to re-order the combined features into max-relevance with the labels andmin-redundancy of each feature. The generated features are further reduced with principal componentanalysis (PCA) for extracting the principal components. Experimental results show thatthe proposed work outperforms the state-of-art methods using the same settings in the publiclyavailable DEAP data set.
机译:近年来,研究人员一直在尝试从记录的脑电信号(如脑电图(EEG))中检测人的情绪。但是,由于来自EEG录音的高噪声水平,仅单个功能无法实现良好的性能。自动识别情绪的关键是结合 r ndistinct功能。在本文中,我们提出了一种混合 r n维特征减少方案,该方案使用了从EEG r n记录中提取的总共14个不同特征。该方案使用监督 r n和无监督的特征选择过程在特征空间中组合了这些独特的特征。最大相关性最小冗余度 r n(mRMR)用于将组合要素重新排序为具有每个要素的标签和 r nmin冗余度的最大相关度。通过提取主成分的主成分 r nanalysis(PCA)进一步减少了生成的特征。实验结果表明,在公开可用的DEAP数据集中使用相同设置,拟议的工作优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号