首页> 外文期刊>Neurocomputing >Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation
【24h】

Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation

机译:基于混合自适应学习的粒子群优化和支持向量回归模型

获取原文
获取原文并翻译 | 示例

摘要

Ore grade estimation is one of the key stages and the most complicated aspects in mining. Its complexity originates from scientific uncertainty. In this paper, a novel hybrid SLPSO-SVR model that hybridized the self-adaptive learning based particle swarm optimization (SLPSO) and support vector regression (SVR) is proposed for ore grade estimation. This hybrid SLPSO-SVR model searches for SVR's optimal parameters using self-adaptive learning based particle swarm optimization algorithms, and then adopts the optimal parameters to construct the SVR models. The SVR uses the 'Max-Margin' idea to search for an optimum hyperplane, and adopts the ε-insensitive loss function for minimizing the training error between the training data and identified function. The hybrid SLPSO-SVR grade estimation method has been tested on a number of real ore deposits. The result shows that method has advantages of rapid training, generality and accuracy grade estimation approach. It can provide with a very fast and robust alternative to the existing time-consuming methodologies for ore grade estimation.
机译:矿石品位估计是采矿的关键阶段和最复杂的方面之一。其复杂性源于科学的不确定性。本文提出了一种新的混合SLPSO-SVR模型,该模型将基于自适应学习的粒子群优化(SLPSO)和支持向量回归(SVR)进行了混合,用于矿石品位估计。该混合SLPSO-SVR模型使用基于自适应学习的粒子群优化算法搜索SVR的最佳参数,然后采用最佳参数构建SVR模型。 SVR使用“最大余量”思想来搜索最佳超平面,并采用ε不敏感损失函数来最小化训练数据和已识别函数之间的训练误差。混合SLPSO-SVR品位估计方法已经在许多真实矿床中进行了测试。结果表明,该方法具有快速训练,通用性和准确性等级估计的优点。它可以为现有费时的矿石品位估算方法提供非常快速和强大的替代方法。

著录项

  • 来源
    《Neurocomputing》 |2013年第22期|179-190|共12页
  • 作者单位

    Key Laboratory of Mineral Resources, Institute of Geology and Geophysics. Chinese Academy of Sciences. Beijing 100029, China;

    Vehicle & Motive Power Engineering College, Henan University of Science and Technology, Henan 471023, China;

    Key Laboratory of Mineral Resources, Institute of Geology and Geophysics. Chinese Academy of Sciences. Beijing 100029, China;

    State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Support vector regression; Self-adaptive learning based particle swarm; optimization; Ore grade estimation;

    机译:支持向量回归;基于自适应学习的粒子群;优化;矿石品位估算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号