首页> 外文期刊>Neurocomputing >A new sense-through-foliage target recognition method based on hybrid differential evolution and self-adaptive particle swarm optimization-based support vector machine
【24h】

A new sense-through-foliage target recognition method based on hybrid differential evolution and self-adaptive particle swarm optimization-based support vector machine

机译:基于混合差分进化和自适应粒子群优化的支持向量机的全叶目标识别方法

获取原文
获取原文并翻译 | 示例

摘要

Sense-through-foliage target detection and recognition is of interest to both military and civilian research. In this paper, a new recognition method based on hybrid differential evolution and self-adaptive particle swarm optimization-based support vector machine (SVM) is proposed to recognize targets obscured by foliage. To seek the optimal parameters of SVM, a new hybrid differential evolution and self-adaptive particle swarm optimization (DEPSO) algorithm is developed to determine the optimal parameters for SVM with the highest accuracy and generalization ability. In this work, sparse representation is applied to extract the target features from real target echo waveforms measured by a bistatic ultra-wideband (UWB) radar system. Then, the extracted features are input into the proposed method to automatically recognize the types of targets. This method is validated by experiments taken in the forest environment. Compared with the commonly used particle swarm optimization-optimized SVM (PSO-SVM), SVM, k-nearest neighbor (KNN) and BP neural network (BPNN), the proposed DEPSO-SVM can achieve a higher accuracy. Experimental results demonstrate the effectiveness and robustness of the proposed method for sense-through-foliage target recognition.
机译:通过树叶感知目​​标的检测和识别对于军事和民用研究都非常重要。提出了一种基于混合差分进化和基于自适应粒子群优化的支持向量机(SVM)的识别方法。为了寻求支持向量机的最优参数,提出了一种新的混合差分进化与自适应粒子群算法(DEPSO),以最高精度和泛化能力确定支持向量机的最优参数。在这项工作中,稀疏表示被用于从由双基地超宽带(UWB)雷达系统测量的实际目标回波波形中提取目标特征。然后,将提取的特征输入到建议的方法中以自动识别目标的类型。通过在森林环境中进行的实验验证了该方法。与常用的粒子群优化优化支持向量机(PSO-SVM),支持向量机,k最近邻(KNN)和BP神经网络(BPNN)相比,提出的DEPSO-SVM可以实现更高的精度。实验结果证明了所提方法对叶子目标的感知的有效性和鲁棒性。

著录项

  • 来源
    《Neurocomputing》 |2015年第ptab期|573-584|共12页
  • 作者

    Shijun Zhai; Ting Jiang;

  • 作者单位

    Key Laboratory of Universal Wireless Communication, Ministry of Education, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, P.O. Box 96, No. 10 Xi Tu Cheng Road, Beijing 100876, China;

    Key Laboratory of Universal Wireless Communication, Ministry of Education, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, P.O. Box 96, No. 10 Xi Tu Cheng Road, Beijing 100876, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Target recognition; Support vector machine; Differential evolution; Self-adaptive particle swarm optimization; Sparse representation; UWB bistatic radar;

    机译:目标识别;支持向量机;差异演化;自适应粒子群优化;稀疏表示;超宽带双基地雷达;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号