首页> 外文OA文献 >A hybrid-forecasting model reducing Gaussian noise based on the Gaussian support vector regression machine and chaotic particle swarm optimization
【2h】

A hybrid-forecasting model reducing Gaussian noise based on the Gaussian support vector regression machine and chaotic particle swarm optimization

机译:基于高斯支持向量回归机和混沌粒子群优化算法的混合高斯噪声预测模型

摘要

In this paper, the relationship between Gaussian noise and the loss function of the support vector regression machine (SVRM) is analyzed, and then a Gaussian loss function proposed to reduce the effect of such noise on the regression estimates. Since the epsilon-insensitive loss function cannot reduce noise, a novel support vector regression machine: g-SVRM, is proposed, then a chaotic particle swarm optimization (CPSO) algorithm developed to estimate its unknown parameters. Finally, a hybrid-forecasting model combining g-SVRM with the CPSO is proposed to forecast a multi-dimensional time series. The results of two experiments demonstrate the feasibility of this approach.
机译:本文分析了高斯噪声与支持向量回归机(SVRM)的损失函数之间的关系,然后提出了一种高斯损失函数以减少此类噪声对回归估计的影响。由于对ε不敏感的损失函数无法降低噪声,因此提出了一种新型的支持向量回归机:g-SVRM,然后开发了一种混沌粒子群算法(CPSO)来估计其未知参数。最后,提出了一种将g-SVRM与CPSO相结合的混合预测模型来预测多维时间序列。两个实验的结果证明了这种方法的可行性。

著录项

  • 作者

    Wu Q; Law R; Wu E; Lin J;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号