首页> 外文期刊>Neurocomputing >Full-adaptive THEN-part equipped fuzzy wavelet neural controller design of FACTS devices to suppress inter-area oscillations
【24h】

Full-adaptive THEN-part equipped fuzzy wavelet neural controller design of FACTS devices to suppress inter-area oscillations

机译:FACTS装置的全自适应THEN部分装备的模糊小波神经控制器设计,可抑制区域间振荡

获取原文
获取原文并翻译 | 示例

摘要

By incorporating Self-Recurrent Wavelet Neural Networks (SRWNNs) into Takagi-Sugeno-Kang (TSK) fuzzy model, this paper not only develops a novel Indirect Stable Adaptive Fuzzy Wavelet Neural Controller (ISAFWNC), but also uses it as a supplementary damping controller of Flexible AC Transmission System (FACTS) devices. In the proposed approach, the SRWNN is employed to construct a full-adaptive self-recurrent consequent part for each fuzzy rule of a TSK fuzzy model. A Stable Back-Propagation (SBP) algorithm with the aid of an Adaptive SRWNN-ldentifier (ASRWNNI) is then employed to adjust fuzzy rules in real-time operation while the closed-loop stability is guaranteed by a Lyapunov-based approach. The proposed controller is thus able to handle the plant uncertainty by both the concepts of fuzzy logic and ASRWNNI while the local details of non stationary signals can be decomposed in terms of the dilation and translation parameters of the self-recurrent wavelet neural networks. A Genetic Algorithm (GA) based approach is proposed to choose the initial values of the dilation and the translation parameters of the wavelet and thus to increases the training speed and convergence rate of the proposed control scheme, since the BP convergence rate depends on the selection of the initial values of the network parameters. Simulations results of both two-machine two-area and benchmark four-machine two-area power systems, respectively equipped with a Static Synchronous Series Compensator (SSSC) and a Unified Power Flow Controller (UPFC) demonstrate the effectiveness of the proposed ISAFWNC design.
机译:通过将自递归小波神经网络(SRWNN)集成到Takagi-Sugeno-Kang(TSK)模糊模型中,本文不仅开发了一种新颖的间接稳定自适应模糊小波神经控制器(ISAFWNC),还将其用作辅助阻尼控制器柔性交流传输系统(FACTS)设备的制造。在所提出的方法中,SRWNN用于为TSK模糊模型的每个模糊规则构造一个完全自适应的递归结果部分。然后,采用自适应SRWNN标识符(ASRWNNI)的稳定反向传播(SBP)算法来调整实时操作中的模糊规则,同时通过基于Lyapunov的方法来保证闭环稳定性。因此,所提出的控制器能够通过模糊逻辑和ASRWNNI的概念来处理工厂不确定性,而非平稳信号的局部细节可以根据自循环小波神经网络的膨胀和平移参数进行分解。提出了一种基于遗传算法(GA)的方法来选择扩张的初始值和小波的平移参数,从而提高了所提出的控制方案的训练速度和收敛速度,因为BP收敛速度取决于选择网络参数的初始值。分别装有静态同步串联补偿器(SSSC)和统一潮流控制器(UPFC)的两机两区和基准四机两区电力系统的仿真结果证明了所提出的ISAFWNC设计的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号