首页> 外文期刊>Neurocomputing >Attribute-based knowledge transfer learning for human pose estimation
【24h】

Attribute-based knowledge transfer learning for human pose estimation

机译:基于属性的知识转移学习用于人体姿势估计

获取原文
获取原文并翻译 | 示例

摘要

Because of the diversity of human poses and appearances of the same pose, it is difficult to collect comprehensive training samples of all kinds of human poses and maintain the probability distribution of the training samples with the same as that of testing. Therefore, this paper learns prior knowledge from the known human pose in the collected samples to infer characteristics of new human poses. This way realizing zero-shot and one-shot learning overcomes the above two difficulties. Finally, a novel human pose estimation based on knowledge transfer learning is proposed in this paper. In the process of our human pose estimation method, first, an attribute-based representation model of the human pose is built based on our proposed "body-pose-attribute" hierarchical framework. Under this model, an image would be divided into disjoint regions, and an attribute is extracted from each region. Thus, an attribute bags can be used to represent a specific human pose, then the attribute bag of a new human pose can be effectively transferred from the prior knowledge obtained from the known human poses. Second, an attribute parameter model called supervised LDA (SLDA) is built, and the Gibbs sampling algorithm is exploited to infer and to learn several parameters of the model for predicting the attributes of the test target samples. The experimental results from the subset of H3D dataset and VOC2011 dataset have shown that the proposed method is feasible and effective even if the training sample set is small.
机译:由于人体姿势和相同姿势的外观的多样性,难以收集与人体姿势相同的各种人体姿势的综合训练样本,并且难以维持与测试相同的训练样本的概率分布。因此,本文从收集的样本中已知的人体姿势中学习了先验知识,以推断新的人体姿势的特征。这样实现零发和单发学习克服了以上两个困难。最后,提出了一种基于知识转移学习的新型人体姿态估计方法。在我们的人体姿态估计方法的过程中,首先,基于我们提出的“人体姿态属性”层次框架,建立了基于属性的人体姿态表示模型。在这种模型下,图像将被分成不相交的区域,并从每个区域中提取一个属性。因此,可以使用属性包来表示特定的人体姿势,然后可以从从已知的人体姿势获得的先验知识有效地转移新的人体姿势的属性包。其次,建立了称为监督LDA(SLDA)的属性参数模型,并利用Gibbs采样算法来推断和学习模型的几个参数,以预测测试目标样本的属性。来自H3D数据集和VOC2011数据集的子集的实验结果表明,即使训练样本集很小,该方法也是可行和有效的。

著录项

  • 来源
    《Neurocomputing》 |2013年第20期|301-310|共10页
  • 作者单位

    Computer and Communication Engineering School, Changsha University of Science and Technology, Changsha, Hunan 410004, China;

    Computer and Communication Engineering School, Changsha University of Science and Technology, Changsha, Hunan 410004, China;

    Computer and Communication Engineering School, Changsha University of Science and Technology, Changsha, Hunan 410004, China;

    Computer and Communication Engineering School, Changsha University of Science and Technology, Changsha, Hunan 410004, China;

    Computer and Communication Engineering School, Changsha University of Science and Technology, Changsha, Hunan 410004, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computer vision; Human pose estimation; Knowledge transfer learning; Attribute model; Supervised Latent Dirichlet Allocation; Bag of features;

    机译:计算机视觉;人体姿势估计;知识转移学习;属性模型;监督潜在的狄利克雷分配;功能包;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号