首页> 外文期刊>Neurocomputing >A simple and effective algorithm for implementing particle swarm optimization in RBF network's design using input-output fuzzy clustering
【24h】

A simple and effective algorithm for implementing particle swarm optimization in RBF network's design using input-output fuzzy clustering

机译:基于输入-输出模糊聚类的RBF网络设计中实现粒子群优化的简单有效算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we investigate the implementation of particle swarm optimization in the design of radial basis function neural networks under the framework of input-output fuzzy clustering. The problem being studied concerns the optimal estimation of the basis function centers, provided that the learning process is guided by the information of the output space. The proposed method encompasses a cost function, which is defined by a reformulated version of the fuzzy c-means applied in the product (i.e. input-output) space. The minimization of this function is accomplished by using the particle swarm optimization, where each particle encodes a set of cluster centers associated to a single fuzzy partition. The algorithm is simple and easy to implement, yet very effective. The performance of the resulting network is tested and verified through a number of experimental cases in terms of a 10-fold cross validation analysis.
机译:在输入输出模糊聚类的框架下,本文研究了粒子群算法在径向基函数神经网络设计中的实现。所研究的问题涉及基本功能中心的最佳估计,前提是学习过程受输出空间信息的指导。所提出的方法包括成本函数,该成本函数由在乘积(即输入-输出)空间中应用的模糊c均值的重新形式定义。通过使用粒子群优化来实现此功能的最小化,其中每个粒子编码与单个模糊分区关联的一组聚类中心。该算法简单易实现,但非常有效。最终网络的性能通过10倍交叉验证分析中的许多实验案例进行测试和验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号