首页> 外文期刊>Fuzzy sets and systems >On training RBF neural networks using input-output fuzzy clustering and particle swarm optimization
【24h】

On training RBF neural networks using input-output fuzzy clustering and particle swarm optimization

机译:基于输入输出模糊聚类和粒子群算法的RBF神经网络训练

获取原文
获取原文并翻译 | 示例

摘要

This paper elaborates on the use of particle swarm optimization in training Gaussian type radial basis function neural networks under the umbrella of input-output fuzzy clustering. The problem being investigated concerns the selection of basis function centers that contribute most in network's performance, given that the clustering process in the input space is guided by the clustering in the output space. To accomplish this task, we quantify the effect of the input space fuzzy partition upon network's square error in terms of an objective function that describes the ability of the partition to accurately reconstruct the input training samples. We, then, theoretically prove that the minimization of the above function acts to minimize an upper bound of the network's square error. Therefore, the resulting solution corresponds to a minimal square error, while at the same time it maintains the structure of the input data. Due to the peculiarity of the aforementioned objective function, we treat it as the fitness function used by the particle swarm optimizer. The proposed methodology encompasses three design steps. The first step implements an independent fuzzy clustering in the output space to obtain a set of cluster centers. In the second step, unlike other approaches, the above centers are directly involved in the estimation of the membership degrees in the input-output space. In the third step, these membership degrees are used by the particle swarm optimizer in order to obtain optimal values for the centers. To summarize, the novelty of our contribution lies in: (a) the way we handle the information flow from output to input space, and (b) the way we handle the effect of the input space partition upon network's performance. The experiments indicate that the fitness function decreases as the number of hidden node increases. Finally, a comparison between the proposed method and other sophisticated approaches shows its statistically significant superiority.
机译:本文阐述了在输入输出模糊聚类的保护下,粒子群算法在训练高斯型径向基函数神经网络中的应用。考虑到输入空间中的聚类过程由输出空间中的聚类指导,正在研究的问题涉及对网络性能贡献最大的基本功能中心的选择。为了完成此任务,我们根据目标函数来量化输入空间模糊分区对网络平方误差的影响,该目标函数描述了分区准确重建输入训练样本的能力。然后,我们从理论上证明上述函数的最小化可最大程度地减小网络平方误差的上限。因此,所得到的解对应于最小的平方误差,而同时又保持了输入数据的结构。由于上述目标函数的特殊性,我们将其视为粒子群优化器使用的适应度函数。所提出的方法包括三个设计步骤。第一步在输出空间中实现独立的模糊聚类,以获得一组聚类中心。在第二步中,与其他方法不同,上述中心直接参与了输入输出空间中隶属度的估计。第三步,粒子群优化器使用这些隶属度以获得中心的最佳值。总而言之,我们所做贡献的新颖之处在于:(a)处理从输出到输入空间的信息流的方式,以及(b)处理输入空间分区对网络性能的影响的方式。实验表明,适应度函数随着隐藏节点数量的增加而减小。最后,将建议的方法与其他复杂方法进行比较,显示出其统计学上的显着优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号