首页> 外文期刊>Neurocomputing >Nonnegative sparse coding induced hashing for image copy detection
【24h】

Nonnegative sparse coding induced hashing for image copy detection

机译:用于图像复制检测的非负稀疏编码诱导哈希

获取原文
获取原文并翻译 | 示例

摘要

Among the existing hashing methods, the Self-taught hashing (STH) is regarded as the state-of-the-art work. However, it still suffers the problem of semantic loss, which mainly comes from the fact that the original optimization objective of in-sample data is NP-hard and therefore is compromised into the combination of Laplacian Eigenmaps (LE) and binarization. Obviously, the shape associated with the embedding of LE is quite dissimilar to that of binary code. As a result, binarization of the LE embedding readily leads to significant semantic loss. To overcome this drawback, we combine the constrained nonnegative sparse coding and the Support Vector Machine (SVM) to propose a new hashing method, called nonnegative sparse coding induced hashing (NSCIH). Here, nonnegative sparse coding is exploited for seeking a better intermediate representation, which can make sure that the binarization can be smoothly conducted. In addition, we build an image copy detection scheme based on the proposed hashing methods. The extensive experiments show that the NSCIH is superior to the state-of-the-art hashing methods. At the same time, this copy detection scheme can be used for performing copy detection over very large image database.
机译:在现有的散列方法中,自学式散列(STH)被视为最新技术。但是,它仍然遭受语义损失的问题,这主要是由于样本内数据的原始优化目标是NP难的,因此被折衷为拉普拉斯特征图谱(LE)和二值化的组合。显然,与LE嵌入相关的形状与二进制代码完全不同。结果,LE嵌入的二值化容易导致显着的语义损失。为克服此缺点,我们将约束非负稀疏编码和支持向量机(SVM)结合起来,提出了一种新的哈希方法,称为非负稀疏编码诱导哈希(NSCIH)。在这里,非负稀疏编码被用来寻找更好的中间表示,这可以确保二值化可以顺利进行。此外,我们基于提出的哈希方法构建了图像复制检测方案。广泛的实验表明,NSCIH优于最新的哈希方法。同时,此复制检测方案可用于在非常大的图像数据库上执行复制检测。

著录项

  • 来源
    《Neurocomputing》 |2013年第1期|81-89|共9页
  • 作者单位

    School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;

    School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;

    School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;

    School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;

    School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;

    School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    content based copy detection; semantic hashing; nonnegative sparse coding; support vector machine;

    机译:基于内容的复制检测;语义哈希;非负稀疏编码;支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号