首页> 外文期刊>Neurocomputing >Optimizing spatial spectral patterns jointly with channel configuration for brain-computer interface
【24h】

Optimizing spatial spectral patterns jointly with channel configuration for brain-computer interface

机译:与通道配置一起优化空间光谱图,用于人机界面

获取原文
获取原文并翻译 | 示例

摘要

The power of common spatial pattern (CSP) has been widely validated in electroencephalogram (EEC) based brain-computer interface (BCI). However, its effectiveness is highly dependent on subject-specific time segment, channel configuration and frequency band. Hence, the preprocessing procedure of CSP algorithm is critical to enhance the performance of BCI system. This paper proposes a feature extraction and selection method based on common spatial and spectral pattern for motor imagery brain-computer interface (BCI). We formulate the optimization of spatial spectral patterns, channel configuration and time segment as maximizing the proposed criterions including mutual information algorithm, Fisher ratio algorithm and wrapper method. The proposed method is evaluated on single trial EEG from dataset IVa of BCI competition III. The results show that best features are selected by a wrapper method and these features in cross-validation yield better performance compared to most of the reported results.
机译:通用空间模式(CSP)的功能已在基于脑电图(EEC)的脑机接口(BCI)中得到了广泛验证。但是,其效果高度取决于特定对象的时间段,频道配置和频段。因此,CSP算法的预处理过程对于提高BCI系统的性能至关重要。提出了一种基于共同空间和光谱模式的运动图像脑机接口特征提取与选择方法。我们将空间频谱模式,信道配置和时间段的优化制定为最大化所提出的准则,包括互信息算法,Fisher比率算法和包装器方法。在来自BCI竞争III的数据集IVa的单一试验EEG上评估了提出的方法。结果表明,通过包装方法选择了最佳特征,并且与大多数报道的结果相比,这些交叉验证的特征具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号