首页> 外文期刊>Neurocomputing >Differentiating adaptive Neuro-Fuzzy Inference System for accurate function derivative approximation
【24h】

Differentiating adaptive Neuro-Fuzzy Inference System for accurate function derivative approximation

机译:差分自适应神经模糊推理系统,用于精确的函数导数逼近

获取原文
获取原文并翻译 | 示例

摘要

Function and its partial derivative approximation based upon a set of discrete dataset are important issues in soft computing. Several function approximators have been presented most of them fits a model to the dataset so that the Mean Squared Error is minimized. In this paper, we propose to calculate the derivative of the Neuro-Fuzzy function approximator directly according to the parametric structure of the system and the available dataset. A criterion for derivative approximation is defined based on a combination of MSE and Approximate Entropy. According to this criterion, the superiority of the Neuro-Fuzzy model is demonstrated in comparison with some other types of Artificial Neural Networks and Polynomial models.
机译:基于一组离散数据集的函数及其偏导数逼近是软计算中的重要问题。已经提出了几种函数逼近器,其中大多数将模型拟合到数据集,以使均方误差最小。在本文中,我们建议直接根据系统的参数结构和可用数据集来计算Neuro-Fuzzy函数逼近器的导数。基于MSE和近似熵的组合定义了导数近似的标准。根据此标准,与其他一些类型的人工神经网络和多项式模型相比,证明了神经模糊模型的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号