首页> 外文期刊>Neurocomputing >Architecture selection for networks trained with extreme learning machine using localized generalization error model
【24h】

Architecture selection for networks trained with extreme learning machine using localized generalization error model

机译:使用局部化广义误差模型的极限学习机训练网络的架构选择

获取原文
获取原文并翻译 | 示例

摘要

The initial localized generalization error model (LGEM) aims to find an upper bound of error between a target function and a radial basis function neural network (RBFNN) within a neighborhood of the training samples. The contribution of LGEM can be briefly described as that the generalization error is less than or equal to the summation of three terms: training error, stochastic sensitivity measure (SSM), and a constant. This paper extends the initial LGEM to a new LGEM model for single-hidden layer feedforward neural networks (SLFNs) trained with extreme learning machine (ELM) which is a type of new training algorithms without iterations. The development of this extended LGEM can provide some useful guidelines for improving the generalization ability of SLFNs trained with ELM. An algorithm for architecture selection of the SLFNs is also proposed based on the extended LGEM. Experimental results on a number of benchmark data sets show that an approximately optimal architecture in terms of number of neurons of a SLFN can be found using our method. Furthermore, the experimental results on eleven UCI data sets show that the proposed method is effective and efficient.
机译:初始局部广义误差模型(LGEM)的目的是在训练样本附近找到目标函数和径向基函数神经网络(RBFNN)之间的误差上限。 LGEM的贡献可以简单地描述为泛化误差小于或等于三个项的总和:训练误差,随机敏感度度量(SSM)和常数。本文将最初的LGEM扩展到了一种新的LGEM模型,用于使用极限学习机(ELM)训练的单隐藏层前馈神经网络(SLFN),这是一种无需迭代的新训练算法。这种扩展的LGEM的开发可以提供一些有用的指导,以提高用ELM训练的SLFN的泛化能力。在扩展的LGEM的基础上,还提出了SLFN的架构选择算法。在许多基准数据集上的实验结果表明,使用我们的方法可以找到就SLFN的神经元数量而言近似最佳的体系结构。此外,在11个UCI数据集上的实验结果表明,该方法是有效的。

著录项

  • 来源
    《Neurocomputing》 |2013年第15期|3-9|共7页
  • 作者单位

    Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University, Baoding, Hebei 071002, China;

    Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University, Baoding, Hebei 071002, China;

    Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University, Baoding, Hebei 071002, China;

    Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University, Baoding, Hebei 071002, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    localized generalization error; extreme learning machine; network architecture selection; cross validation (CV); sensitivity measure;

    机译:局部泛化误差极限学习机;网络架构选择;交叉验证(CV);敏感性测度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号