机译:使用局部化广义误差模型的极限学习机训练网络的架构选择
Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University, Baoding, Hebei 071002, China;
Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University, Baoding, Hebei 071002, China;
Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University, Baoding, Hebei 071002, China;
Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Computer Science, Hebei University, Baoding, Hebei 071002, China;
localized generalization error; extreme learning machine; network architecture selection; cross validation (CV); sensitivity measure;
机译:应用新的局部化广义误差模型来设计由极限学习机训练的神经网络
机译:通过局部泛化误差模型培训极限学习机
机译:单层感知器神经网络和SIGMOID支持向量机的局部广义误差模型
机译:具有局部化广义误差模型的改进的基于自适应增量误差最小化的极限学习机
机译:邻域大小可变的局部化广义误差模型及其在集合特征选择中的应用
机译:神经系统本地化:学习知识表示和神经网络模型的概括
机译:预测显着波高;嵌套网格数值模型与人工神经网络,极端学习和支持向量机的机器学习模型的比较