首页> 外文期刊>Neurocomputing >Semi-supervised spectral hashing for fast similarity search
【24h】

Semi-supervised spectral hashing for fast similarity search

机译:半监督频谱哈希用于快速相似性搜索

获取原文
获取原文并翻译 | 示例

摘要

Fast similarity search has been a key step in many large-scale computer vision and information retrieval tasks. Recently, there are a surge of research interests on the hashing-based techniques to allow approximate but highly efficient similarity search. Most existing hashing methods are unsuper-vised, which demonstrate the promising performance using the information of unlabeled data to generate binary codes. In this paper, we propose a novel semi-supervised hashing method to take into account the pairwise supervised information including must-link and cannot-link, and then maximize the information provided by each bit according to both the labeled data and the unlabeled data. Different from previous works on semi-supervised hashing, we use the square of the Euclidean distance to measure the Hamming distance, which leads to a more general Laplacian matrix based solution after the relaxation by removing the binary constraints. We also relax the orthogonality constraints to reduce the error when converting the real-value solution to the binary one. The experimental evaluations on three benchmark datasets show the superior performance of the proposed method over the state-of-the-art approaches.
机译:快速相似性搜索已成为许多大型计算机视觉和信息检索任务中的关键步骤。最近,对基于散列的技术的研究兴趣激增,以允许进行近似但高效的相似性搜索。大多数现有的散列方法都是无监督的,这些方法使用未标记的数据的信息来生成二进制代码,证明了令人鼓舞的性能。在本文中,我们提出了一种新颖的半监督哈希方法,该方法考虑了包括必须链接和不能链接的成对监督信息,然后根据标记数据和未标记数据最大化每个位提供的信息。与先前关于半监督哈希的工作不同,我们使用欧几里得距离的平方来测量汉明距离,这在通过消除二元约束而松弛之后导致了基于拉普拉斯矩阵的更通用的解决方案。我们还放宽了正交性约束,以减少将实值解转换为二进制解时的误差。在三个基准数据集上的实验评估表明,该方法优于最新方法。

著录项

  • 来源
    《Neurocomputing》 |2013年第4期|52-58|共7页
  • 作者单位

    College of Computer Science and Technology, Zhejiang University, No. 38, Zheda Road, Hangzhou, Zhejiang 310027, China;

    College of Computer Science and Technology, Zhejiang University, No. 38, Zheda Road, Hangzhou, Zhejiang 310027, China;

    College of Computer Science and Technology, Zhejiang University, No. 38, Zheda Road, Hangzhou, Zhejiang 310027, China;

    College of Computer Science and Technology, Zhejiang University, No. 38, Zheda Road, Hangzhou, Zhejiang 310027, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hashing; approximate nearest neighbor search; dimensionality reduction; embedding learning;

    机译:散列近似最近邻居搜索;降维;嵌入学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号