首页> 外文期刊>Image Processing, IEEE Transactions on >Semi-Supervised Multi-View Discrete Hashing for Fast Image Search
【24h】

Semi-Supervised Multi-View Discrete Hashing for Fast Image Search

机译:半监督多视图离散散列,用于快速图像搜索

获取原文
获取原文并翻译 | 示例

摘要

Hashing is an important method for fast neighbor search on large scale dataset in Hamming space. While most research on hash models are focusing on single-view data, recently the multi-view approaches with a majority of unsupervised multi-view hash models have been considered. Despite of existence of millions of unlabeled data samples, it is believed that labeling a handful of data will remarkably improve the searching performance. In this paper, we propose a semi-supervised multi-view hash model. Besides incorporating a portion of label information into the model, the proposed multi-view model differs from existing multi-view hash models in three-fold: 1) a composite discrete hash learning modeling that is able to minimize the loss jointly on multi-view features when using relaxation on learning hashing codes; 2) exploring statistically uncorrelated multi-view features for generating hash codes; and 3) a composite locality preserving modeling for locally compact coding. Extensive experiments have been conducted to show the effectiveness of the proposed semi-supervised multi-view hash model as compared with related multi-view hash models and semi-supervised hash models.
机译:哈希是在汉明空间中对大规模数据集进行快速邻居搜索的一种重要方法。尽管大多数对哈希模型的研究都集中在单视图数据上,但是最近已经考虑了采用大多数无监督多视图哈希模型的多视图方法。尽管存在数百万个未标记的数据样本,但相信标记少量数据将显着提高搜索性能。在本文中,我们提出了一种半监督多视图哈希模型。除了将一部分标签信息整合到模型中之外,拟议的多视图模型与现有的多视图哈希模型在三个方面有所不同:1)一种复合离散哈希学习模型,能够共同将多视图上的损失最小化在学习哈希码时使用放松的功能; 2)探索统​​计上不相关的多视图特征以生成哈希码; 3)用于局部紧凑编码的复合局部保留模型。已经进行了广泛的实验以显示与相关的多视图哈希模型和半监督哈希模型相比,所提出的半监督多视图哈希模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号