首页> 外文期刊>IEEE Transactions on Image Processing >Deep Collaborative Multi-View Hashing for Large-Scale Image Search
【24h】

Deep Collaborative Multi-View Hashing for Large-Scale Image Search

机译:大型图像搜索的深度协同多视图散列

获取原文
获取原文并翻译 | 示例

摘要

Hashing could significantly accelerate large-scale image search by transforming the high-dimensional features into binary Hamming space, where efficient similarity search can be achieved with very fast Hamming distance computation and extremely low storage cost. As an important branch of hashing methods, multi-view hashing takes advantages of multiple features from different views for binary hash learning. However, existing multi-view hashing methods are either based on shallow models which fail to fully capture the intrinsic correlations of heterogeneous views, or unsupervised deep models which suffer from insufficient semantics and cannot effectively exploit the complementarity of view features. In this paper, we propose a novel Deep Collaborative Multi-view Hashing (DCMVH) method to deeply fuse multi-view features and learn multi-view hash codes collaboratively under a deep architecture. DCMVH is a new deep multi-view hash learning framework. It mainly consists of 1) multiple view-specific networks to extract hidden representations of different views, and 2) a fusion network to learn multi-view fused hash code. DCMVH associates different layers with instance-wise and pair-wise semantic labels respectively. In this way, the discriminative capability of representation layers can be progressively enhanced and meanwhile the complementarity of different view features can be exploited effectively. Finally, we develop a fast discrete hash optimization method based on augmented Lagrangian multiplier to efficiently solve the binary hash codes. Experiments on public multi-view image search datasets demonstrate our approach achieves substantial performance improvement over state-of-the-art methods.
机译:散列可以通过将高维特征转换为二进制汉明空间来显着加速大规模图像搜索,其中可以通过非常快速的汉明距离计算和极低的存储成本实现有效的相似性搜索。作为散列方法的一个重要分支,多视图散列从不同视图中获取多个功能的优势对于二进制哈希学习。然而,现有的多视图散列方法是基于浅模型,该浅模型未能完全捕获异构视图的内在相关性,或遭受语义不足的无监督的深层模型,不能有效利用视图特征的互补性。在本文中,我们提出了一种新颖的深度协同多视图散列(DCMVH)方法,以深入熔断多视图特征,并在深度架构下协同地学习多视图哈希码。 DCMVH是一个新的深度多视图哈希学习框架。它主要由1)多视图特定网络提取不同视图的隐藏表示,以及2)融合网络来学习多视图融合哈希码。 DCMVH分别将不同的图层与实例和配对语义标签关联。以这种方式,可以逐渐增强表示层的辨别能力,同时可以有效地利用不同视图特征的互补性。最后,我们开发了一种基于增强拉格朗日乘法器的快速离散散列优化方法,以有效地解决二进制哈希码。公共多视图图像搜索数据集的实验证明了我们的方法实现了最先进的方法的大量性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号