首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Deep Multi-View Enhancement Hashing for Image Retrieval
【24h】

Deep Multi-View Enhancement Hashing for Image Retrieval

机译:图像检索的深度多视图增强散列

获取原文
获取原文并翻译 | 示例

摘要

Hashing is an efficient method for nearest neighbor search in large-scale data space by embedding high-dimensional feature descriptors into a similarity preserving Hamming space with a low dimension. However, large-scale high-speed retrieval through binary code has a certain degree of reduction in retrieval accuracy compared to traditional retrieval methods. We have noticed that multi-view methods can well preserve the diverse characteristics of data. Therefore, we try to introduce the multi-view deep neural network into the hash learning field, and design an efficient and innovative retrieval model, which has achieved a significant improvement in retrieval performance. In this paper, we propose a supervised multi-view hash model which can enhance the multi-view information through neural networks. This is a completely new hash learning method that combines multi-view and deep learning methods. The proposed method utilizes an effective view stability evaluation method to actively explore the relationship among views, which will affect the optimization direction of the entire network. We have also designed a variety of multi-data fusion methods in the Hamming space to preserve the advantages of both convolution and multi-view. In order to avoid excessive computing resources on the enhancement procedure during retrieval, we set up a separate structure called memory network which participates in training together. The proposed method is systematically evaluated on the CIFAR-10, NUS-WIDE and MS-COCO datasets, and the results show that our method significantly outperforms the state-of-the-art single-view and multi-view hashing methods.
机译:哈希是通过将高维特征描述符嵌入具有低维保留汉明空间的相似性来实现大规模数据空间中最近邻居搜索的有效方法。然而,与传统的检索方法相比,通过二进制代码的大规模高速检索具有一定程度的检索精度。我们注意到多视图方法可以很好地保护数据的不同特点。因此,我们尝试将多视图深神经网络介绍到哈希学习领域,并设计了一种高效和创新的检索模型,这取得了显着提高了检索性能。在本文中,我们提出了一种监督的多视图散列模型,可以通过神经网络增强多视图信息。这是一个完全新的哈希学习方法,结合了多视图和深度学习方法。所提出的方法利用有效的视图稳定性评估方法来主动探索视图之间的关系,这将影响整个网络的优化方向。我们还设计了汉明空间中各种多数据融合方法,以保留卷积和多视图的优势。为了避免在检索期间对增强过程的过度计算资源,我们设置了一个名为Memory网络的单独结构,该结构在一起参与培训。在CiFar-10,Nus范围和MS-Coco数据集上系统地评估所提出的方法,结果表明,我们的方法显着优于最先进的单视图和多视图散列方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号