首页> 外文期刊>Neurocomputing >Articulated human body parts detection based on cluster background subtraction and foreground matching
【24h】

Articulated human body parts detection based on cluster background subtraction and foreground matching

机译:基于聚类背景减法和前景匹配的铰接式人体部位检测

获取原文
获取原文并翻译 | 示例

摘要

Detecting people or other articulated objects and localising their body parts is a challenging computer vision problem as their movement is unpredictable under circumstances of partial and full occlusions. In this paper, a framework for human body parts tracking in video sequences using a self-adaptive duster background subtraction (CBS) scheme is proposed based on a Gaussian mixture model (GMM) and foreground matching with rectangular pictorial structures. The efficiency of the designed human body parts tracking framework is illustrated over various real-world video sequences.
机译:检测人或其他铰接的物体并将其身体部位定位是具有挑战性的计算机视觉问题,因为在部分和完全遮挡的情况下它们的运动是不可预测的。本文提出了一种基于高斯混合模型(GMM)和前景与矩形图像结构匹配的自适应除尘器背景减法(CBS)方案在视频序列中跟踪人体部位的框架。通过各种现实世界的视频序列说明了设计的人体部位跟踪框架的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号