首页> 外文期刊>Neurocomputing >An experimental study on evolutionary fuzzy classifiers designed for managing imbalanced datasets
【24h】

An experimental study on evolutionary fuzzy classifiers designed for managing imbalanced datasets

机译:用于管理不平衡数据集的进化模糊分类器的实验研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we show an experimental study on a set of evolutionary fuzzy classifiers (EFCs) purposely designed to manage imbalanced datasets. Three of these EFCs represent the state-of-the-art of the main approaches to the evolutionary generation of fuzzy rule-based systems for imbalanced dataset classification. The fourth EFC is an extension of a multi-objective evolutionary learning (MOEL) scheme we have recently proposed for managing imbalanced datasets: the rule base and the membership function parameters of a set of FRBCs are concurrently learned by optimizing the sensitivity, the specificity and the complexity. By using non-parametric tests, we first compare the results obtained by the four EFCs in terms of area under the ROC curve. We show that our MOEL scheme outperforms two of the comparison algorithms and results to be statistically equivalent to the third. Further, the classifiers generated by our MOEL scheme are characterized by a lower number of rules than the ones generated by the other approaches. To validate the effectiveness of our MOEL scheme in dealing with imbalanced datasets, we also compare our results with the ones achieved, after rebalancing the datasets, by two state-of-the-art algorithms, namely FURIA and FARC-HD, proposed for generating fuzzy rule-based classifiers for balanced datasets. We show that our MOEL scheme is statistically equivalent to FURIA, which is associated with the highest accuracy rank in the statistical tests. However, the rule bases generated by FURIA are characterized by a low interpretability. Finally, we show that the results achieved by our MOEL scheme are statistically equivalent to the ones achieved by four state-of-the-art approaches, based on ensembles of non-fuzzy classifiers, appropriately designed for dealing with imbalanced datasets.
机译:在本文中,我们展示了一组旨在设计用于管理不平衡数据集的进化模糊分类器(EFC)的实验研究。这些EFC中的三个代表了用于不平衡数据集分类的基于模糊规则的系统的进化生成的主要方法的最新技术。第四个EFC是我们最近提出的用于管理不平衡数据集的多目标进化学习(MOEL)方案的扩展:通过优化敏感性,特异性和选择性,同时学习一组FRBC的规则库和隶属函数参数。复杂性。通过使用非参数测试,我们首先比较四种EFC在ROC曲线下的面积方面获得的结果。我们表明,我们的MOEL方案优于两种比较算法,并且统计结果与第三种算法相当。此外,与其他方法生成的规则相比,我们的MOEL方案生成的分类器的特征在于数量更少的规则。为了验证我们的MOEL方案在处理不平衡数据集方面的有效性,我们还将结果与重新平衡数据集后通过两个提出用于生成数据的最新算法FURIA和FARC-HD所获得的结果进行比较。平衡数据集的基于模糊规则的分类器。我们表明,MOEL方案在统计上等同于FURIA,这与统计测试中的最高准确度等级相关。但是,FURIA生成的规则库的特点是解释性低。最后,我们表明,基于非模糊分类器的集合,我们的MOEL方案实现的结果在统计上等同于四种最新方法所实现的结果,这些方法适合处理不平衡数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号