首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets
【24h】

Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets

机译:不平衡且成本敏感数据集的多目标遗传模糊分类器

获取原文
获取原文并翻译 | 示例

摘要

We exploit an evolutionary three-objective optimization algorithm to produce a Pareto front approximation composed of fuzzy rule-based classifiers (FRBCs) with different trade-offs between accuracy (expressed in terms of sensitivity and specificity) and complexity (computed as sum of the conditions in the antecedents of the classifier rules). Then, we use the ROC convex hull method to select the potentially optimal classifiers in the projection of the Pareto front approximation onto the ROC plane. Our method was tested on 13 highly imbalanced datasets and compared with 2 two-objective evolutionary approaches and one heuristic approach to FRBC generation, and with three well-known classifiers. We show by the Wilcoxon signed-rank test that our three-objective optimization approach outperforms all the other techniques, except for one classifier, in terms of the area under the ROC convex hull, an accuracy measure used to globally compare different classification approaches. Further, all the FRBCs in the ROC convex hull are characterized by a low value of complexity. Finally, we discuss how, the misclassification costs and the class distributions are fixed, we can select the most suitable classifier for the specific application. We show that the FRBC selected from the convex hull produced by our three-objective optimization approach achieves the lowest classification cost among the techniques used as comparison in two specific medical applications. Keywords Genetic fuzzy rule-based classifiers - Multi-objective evolutionary algorithms - Imbalanced datasets - ROC curves - Convex hull method
机译:我们利用一种进化的三目标优化算法来产生一个由基于模糊规则的分类器(FRBC)组成的Pareto前沿逼近,在精度(以灵敏度和特异性表示)和复杂度(作为条件之和)之间进行权衡在分类规则的前提下)。然后,我们使用ROC凸壳方法在Pareto正面逼近ROC平面的投影中选择潜在的最佳分类器。我们的方法在13个高度不平衡的数据集上进行了测试,并与2种两目标进化方法和一种启发式方法进行FRBC生成进行了比较,并与三个著名的分类器进行了比较。我们通过Wilcoxon符号秩检验证明,在ROC凸包下的面积方面,我们的三目标优化方法优于所有其他技术(除一个分类器外),ROC凸壳下的精度用于全局比较不同分类方法。此外,ROC凸包中的所有FRBC都具有较低的复杂度值。最后,我们讨论了如何固定错误分类成本和分类分布,我们可以为特定应用选择最合适的分类器。我们表明,从我们的三目标优化方法生产的凸包中选择的FRBC在两种特定医疗应用中用作比较的技术中,实现了最低的分类成本。基于遗传模糊规则的分类器-多目标进化算法-不平衡数据集-ROC曲线-凸壳法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号