首页> 外文期刊>Neurocomputing >A background modeling and foreground segmentation approach based on the feedback of moving objects in traffic surveillance systems
【24h】

A background modeling and foreground segmentation approach based on the feedback of moving objects in traffic surveillance systems

机译:交通监控系统中基于运动对象反馈的背景建模与前景分割方法

获取原文
获取原文并翻译 | 示例

摘要

Background modeling and foreground segmentation are the foundation of traffic surveillance systems. The preciseness of the background model and the accuracy of the foreground segmentation will directly affect the subsequent operations, such as object detection, target classification and behavior understanding. Additionally, the processing time is limited for real applications. The background modeling and foreground segmentation approaches, unfortunately, often have to make two tough trade-offs, including the one between the robustness to background changes and the sensitivity to foreground abnormalities and the other between suppressing noise and reducing the erroneous holes and splitting in foreground segmentation. To deal with these problems, an improved background modeling and foreground segmentation approach based on the feedback of the tracking results of moving objects is proposed. According to the achieved object tracking results, a frame image is divided into four kinds of regions, then a dual-layer background updating is done for these different regions with appropriate operations, which can significantly improve the quality of the background model. Based on the spatial relationship among the tracked objects, the predicted object blocks are merged into regions, among which adaptive segmentation thresholds are used for foreground segmentation. This adaptive threshold approach can efficiently avoid the erroneous holes and splitting in foreground segmentation. Our proposed approach is validated with several public data sets, which confirm its advantages over many existing approaches.
机译:背景建模和前景分割是交通监控系统的基础。背景模型的准确性和前景分割的准确性将直接影响后续操作,例如对象检测,目标分类和行为理解。此外,实际应用程序的处理时间受到限制。不幸的是,背景建模和前景分割方法常常必须做出两个艰难的折衷,一个是在对背景变化的鲁棒性和对前景异常的敏感度之间进行权衡,另一个是在抑制噪声和减少错误的孔并在前景中进行分割之间。分割。针对这些问题,提出了一种基于运动对象跟踪结果反馈的改进的背景建模和前景分割方法。根据获得的目标跟踪结果,将帧图像分为四种区域,然后通过适当的操作对这些不同的区域进行双层背景更新,可以显着提高背景模型的质量。基于被跟踪对象之间的空间关系,将预测对象块合并为区域,其中自适应分割阈值用于前景分割。这种自适应阈值方法可以有效地避免错误的漏洞和前景分割中的分裂。我们提出的方法已通过多个公共数据集进行了验证,这些数据证实了其相对于许多现有方法的优势。

著录项

  • 来源
    《Neurocomputing》 |2014年第10期|32-45|共14页
  • 作者单位

    Department of Automation, University of Science and Technology of China, Hefei 230027, China;

    Department of Automation, University of Science and Technology of China, Hefei 230027, China;

    Department of Automation, University of Science and Technology of China, Hefei 230027, China;

    Department of Automation, University of Science and Technology of China, Hefei 230027, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Background modeling; Foreground segmentation; Feedback; Video surveillance;

    机译:背景建模;前景分割;反馈;视频监控;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号