首页> 外文期刊>Neurocomputing >Modeling and optimization of the glutamic acid fermentation process using computational intelligence techniques
【24h】

Modeling and optimization of the glutamic acid fermentation process using computational intelligence techniques

机译:利用计算智能技术对谷氨酸发酵过程进行建模和优化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a framework for modeling and optimizing the glutamic acid fermentation process using computational intelligence techniques. Considering the special characteristics of such an industrial process, we propose a two-phase optimization strategy to maximize the conversion rate and product concentration of the glutamic acid. Neural network ensembles and an improved Differential Evolutionary Algorithm (DEA) with a non-inferior sorting scheme and niche technology are employed for problem solving. This work provides an approach for design of a model-free optimal control system for the fed-batch fermentation process. Experimental results are promising and demonstrate the applicability of the proposed modeling and optimization techniques for real world applications. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了使用计算智能技术对谷氨酸发酵过程进行建模和优化的框架。考虑到这种工业过程的特殊性,我们提出了一个两阶段优化策略,以最大化谷氨酸的转化率和产物浓度。神经网络集成和具有非劣分类方案和利基技术的改进差分进化算法(DEA)用于解决问题。这项工作为补料分批发酵过程的无模型最优控制系统设计提供了一种方法。实验结果令人鼓舞,并证明了所提出的建模和优化技术在现实世界中的适用性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号