首页> 外文期刊>Neurocomputing >Robust sensorimotor control of human arm model under state-dependent noises, control-dependent noises and additive noises
【24h】

Robust sensorimotor control of human arm model under state-dependent noises, control-dependent noises and additive noises

机译:状态相关噪声,控制相关噪声和加性噪声下人手臂模型的鲁棒感觉运动控制

获取原文
获取原文并翻译 | 示例

摘要

The robust control of human arm movements is planned by the integration of sensory information, sensorimotor transformation and human brain computation. The human arm is controlled to adopt an acceptable posture in a robust optimal way. Due to the intelligent nature of human judgments, the application of the Takagi-Sugeno (T-S) fuzzy model to human judgments may be useful for emulating intelligent computation in the prefrontal cortex of the human brain in the sensorimotor control of human arm movements. In this study, we aimed to develop a robust fuzzy estimator-based control scheme to mimic the sensorimotor control of realistic planar movements of the human arm. The state variables of the planar model of the human arm are all available based on visual and proprioception information. Using posture (state) estimation based on human sensory information in the human brain, robust fuzzy estimator-based control was introduced to model the sensorimotor reference tracking control of arm movements in the presence of internal noises, state-dependent noises and environmental noises. Based on the fuzzy interpolation of a nonlinear stochastic arm system, the complex noise-tolerant robust control of the human arm tracking problem was simplified by solving a set of linear matrix inequalities using Newton's iterative method via an interior point scheme for convex optimization. Finally, a simulation was conducted to illustrate the control procedure and to validate the performance of robust fuzzy estimator-based sensorimotor control for the human arm system. (C) 2015 Elsevier B.V. All rights reserved.
机译:通过整合感官信息,感觉运动转换和人脑计算来计划对手臂运动的鲁棒控制。控制人的手臂以鲁棒的最佳方式采取可接受的姿势。由于人类判断的智能性,将Takagi-Sugeno(T-S)模糊模型应用于人类判断对于模拟人类大脑前额叶皮层中人类手臂运动的感觉运动控制中的智能计算可能是有用的。在这项研究中,我们旨在开发一种鲁棒的基于模糊估计器的控制方案,以模仿人手臂实际平面运动的感觉运动控制。人体平面模型的状态变量都可以根据视觉和本体感受信息获得。利用基于人脑中的人类感觉信息的姿势(状态)估计,引入了基于模糊估计器的鲁棒控制,以在存在内部噪声,状态相关噪声和环境噪声的情况下对手臂运动的感觉运动参考跟踪控制进行建模。基于非线性随机手臂系统的模糊插值,通过使用牛顿迭代法通过凸点优化的内点方案求解一组线性矩阵不等式,简化了对人体手臂跟踪问题的复杂耐噪鲁棒控制。最后,进行了仿真以说明控制程序并验证了基于健壮的基于模糊估计器的人体手臂感觉电机控制的性能。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号