首页> 外文期刊>Neurocomputing >Subset based deep learning for RGB-D object recognition
【24h】

Subset based deep learning for RGB-D object recognition

机译:基于子集的深度学习用于RGB-D对象识别

获取原文
获取原文并翻译 | 示例

摘要

RGB-D camera can easily record both color and depth images and previous works have proved that combining them together could dramatically improve the RGB-D based object recognition accuracy. In this paper, a new method based on a subset approach was introduced to learn higher level features from the raw data. The raw RGB and depth images were divided into several subsets according to their shapes and colors, guaranteeing that any two different objects in each subset are nearly not similar. Then a RGB-Subset-Sparse auto-encoder was trained to extract features from RGB images and a Depth-Subset-Sparse auto-encoder was trained to extract features from depth images for each subset. Then the learned features were transmitted to recursive neural networks (RNNs) to reduce the dimensionality of the features and learn robust hierarchical feature representations. The feature representations learned from RGB images and depth images were concatenated as the final features and then sent to a softmax classifier for classification. The proposed method is evaluated on three benchmark RGB-D datasets, RGB-D dataset of Lai et al., 2D3D dataset of Browatzki et al. and Aharon dataset of Aharon et al. Compared with other methods, ours achieves state-of-the-art performance on the first two datasets. Furthermore, to validate the generalization of our subset approach, we also do some extra experiments of applying the subsets approach to several previous works, these accuracies improved significantly. (C) 2015 Elsevier B.V. All rights reserved.
机译:RGB-D相机可以轻松记录彩色和深度图像,并且以前的工作证明将它们结合在一起可以极大地提高基于RGB-D的物体识别精度。本文介绍了一种基于子集方法的新方法,以从原始数据中学习更高级别的功能。原始RGB和深度图像根据其形状和颜色分为几个子集,从而确保每个子集中的任何两个不同的对象几乎不相似。然后训练RGB子集稀疏自动编码器以从RGB图像中提取特征,然后训练深度子集稀疏自动编码器以从深度图像中提取每个子集的特征。然后将学习到的特征传输到递归神经网络(RNN),以减少特征的维数并学习鲁棒的分层特征表示。从RGB图像和深度图像中学习到的特征表示被合并为最终特征,然后发送到softmax分类器进行分类。该方法在三个基准RGB-D数据集,Lai等的RGB-D数据集,Browatzki等的2D3D数据集上进行了评估。和Aharon等人的Aharon数据集。与其他方法相比,我们的方法在前两个数据集上实现了最先进的性能。此外,为了验证子集方法的一般性,我们还进行了一些额外的实验,将子集方法应用于先前的一些工作,这些准确性得到了显着改善。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号