首页> 外文期刊>IEEE Transactions on Cognitive and Developmental Systems >Canonical Correlation Analysis Regularization: An Effective Deep Multiview Learning Baseline for RGB-D Object Recognition
【24h】

Canonical Correlation Analysis Regularization: An Effective Deep Multiview Learning Baseline for RGB-D Object Recognition

机译:规范相关分析正规化:RGB-D对象识别的有效深度多视图学习基线

获取原文
获取原文并翻译 | 示例

摘要

Object recognition methods based on multimodal data, color plus depth (RGB-D), usually treat each modality separately in feature extraction, which neglects implicit relations between two views and preserves noise from any view to the final representation. To address these limitations, we propose a novel canonical correlation analysis (CCA)-based multiview convolutional neural network (CNNs) framework for RGB-D object representation. The RGB and depth streams process corresponding images, respectively, then are connected by CCA module leading to a common-correlated feature space. In addition, to embed CCA into deep CNNs in a supervised manner, two different schemes are explored. One considers CCA as a regularization (CCAR) term adding to the loss function. However, solving CCA optimization directly is neither computationally efficient nor compatible with the mini-batch-based stochastic optimization. Thus, we further propose an approximation method of CCAR, using the obtained CCA projection matrices to replace the weights of feature concatenation layer at regular intervals. Such a scheme enjoys benefits of full CCAR and is efficient by amortizing its cost over many training iterations. Experiments on benchmark RGB-D object recognition datasets have shown that the proposed methods outperform most existing methods using the very same of their network architectures.
机译:基于多模式数据的对象识别方法,颜色加深度(RGB-D),通常在特征提取中单独处理每个模态,这忽略了两个视图之间的隐式关系并从任何视图保留了最终表示的噪声。为了解决这些限制,我们提出了一种用于RGB-D对象表示的新颖的Cononical相关分析(CCA)基础的多视图卷积神经网络(CNNS)框架。 RGB和深度流分别处理相应的图像,然后通过CCA模块连接通向共同相关的特征空间。此外,为了以监督方式将CCA嵌入深入CNNS,探索了两种不同的方案。一个将CCA作为正则化(CCAR)术语添加到损失函数。然而,求解CCA优化既不是计算上的有效性,也没有与基于迷你批量的随机优化兼容。因此,我们进一步提出了一种CCAR的近似方法,使用获得的CCA投影矩阵以规则的间隔替换特征级联层的权重。这样的计划享有完整CCAR的好处,并通过在许多培训迭代中摊销其成本来效率。基准测试RGB-D对象识别数据集的实验表明,所提出的方法优于使用与其网络架构相同的现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号