首页> 外文期刊>Concurrency and computation: practice and experience >Composite nonlinearmultiset canonical correlation analysis for multiview feature learning and recognition
【24h】

Composite nonlinearmultiset canonical correlation analysis for multiview feature learning and recognition

机译:多视图特色学习与识别的复合非线性多种规范相关分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a composite nonlinear multiset canonical correlation projections (CNMCPs) framework where orthogonal constraints are imposed in each set. This makes CNMCP capable of learning uncorrelated low-dimensional features with minimum redundancy in Hilbert space. With the CNMCP framework, we further present a particular algorithm called multikernel multiset canonical correlations or mKMCC, which introduces different weights into multiple nonlinear functions in all views. An alternating iterative optimization is designed for computational solution. Numerous experimental results on practical datasets have demonstrated the effectiveness and robustness of mKMCC, in contrast with existing kernel correlation learning approaches.
机译:在本文中,我们提出了一种复合非线性多车辆规范相关突起(CNMCPS)框架,其中在每个集合中施加正交约束。 这使得CNMCP能够在希尔伯特空间中具有最小冗余的不相关的低维特征。 通过CNMCP框架,我们进一步提出了一种特定算法,称为Multiqurnel MultiSet Cononical Corlelitation或MKMCC,其将不同的权重引入所有视图中的多个非线性功能。 设计了一个交替的迭代优化用于计算解决方案。 与现有的内核相关学习方法相比,众多对实际数据集的实验结果证明了MKMCC的有效性和稳健性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号