首页> 外文期刊>Neurocomputing >Multi layer RTD-memristor-based cellular neural networks for color image processing
【24h】

Multi layer RTD-memristor-based cellular neural networks for color image processing

机译:基于多层RTD忆阻器的细胞神经网络用于彩色图像处理

获取原文
获取原文并翻译 | 示例

摘要

Multilayer cellular neural networks (CNNs) with multiple state variables in each cell associated with multiple dynamic rules are believed to possess more powerful data computing and signal processing capabilities than single-layer CNNs and are specially suitable for solving complex problems. However, at present, their large scale integrated hardware implementation is still quite challenging based on traditional CMOS-based technology due to high circuity complexity and their applications are thus limited in practice. In this paper, a novel compact multilayer CNN model based on nanometer scale resonant tunneling diodes (RTDs) and memristors is presented. More specifically, in this model, one multilayer CNN cell consists of several sub-cells located in different layers. The resonant tunneling diode with quantum tunneling induced nonlinearity and uniquely folded current-voltage characteristics is used to implement the compact and high-speed cell via replacing the original linear resistor and removing the output function of conventional CNN cells. Furthermore, the interactions between these cells are determined by a pair of multi-dimensional cloning templates. And a compact synaptic circuit based on memristors is designed to realize the cloning template parameter (weight strength) and the multiplication (weighting) operation, by leveraging its nonvolatility, good scalability, and variable conductance. The combination of these desirable elements equips the proposed multilayer CNN with advantages of powerful processing capability as well as high compactness, versatility, and possibility of very large scale integration (VLSI) circuit implementations. Finally, the performance of the proposed multilayer CNN is validated by five illustrative examples in color image processing with each layer dealing with each primary color (red, green or blue) plane. (C) 2015 Elsevier B.V. All rights reserved.
机译:相信与每个动态规则相关联的每个单元中具有多个状态变量的多层细胞神经网络(CNN)比单层CNN具有更强大的数据计算和信号处理能力,并且特别适合解决复杂问题。然而,由于高电路复杂性,目前,基于传统的基于CMOS的技术,它们的大规模集成硬件实现仍然相当具有挑战性,因此其应用在实践中受到限制。本文提出了一种基于纳米级谐振隧穿二极管(RTD)和忆阻器的新型紧凑型多层CNN模型。更具体地说,在此模型中,一个多层CNN单元由位于不同层中的几个子单元组成。具有量子隧穿引起的非线性和独特的折叠电流-电压特性的谐振隧穿二极管通过替代原始的线性电阻器并取消了传统CNN电池的输出功能,来实现紧凑型高速电池。此外,这些细胞之间的相互作用由一对多维克隆模板决定。设计了一个基于忆阻器的紧凑型突触电路,以利用其非易失性,良好的可扩展性和可变的电导率来实现克隆模板参数(权重强度)和乘法(加权)操作。这些所需元素的组合使所提出的多层CNN具有强大的处理能力以及高紧凑性,多功能性和超大规模集成(VLSI)电路实现可能性的优点。最后,通过彩色图像处理中的五个说明性示例验证了所提出的多层CNN的性能,其中每个层都处理每个原色(红色,绿色或蓝色)平面。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号