首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A Memristive Multilayer Cellular Neural Network With Applications to Image Processing
【24h】

A Memristive Multilayer Cellular Neural Network With Applications to Image Processing

机译:忆阻性多层细胞神经网络及其在图像处理中的应用

获取原文
获取原文并翻译 | 示例

摘要

The memristor has been extensively studied in electrical engineering and biological sciences as a means to compactly implement the synaptic function in neural networks. The cellular neural network (CNN) is one of the most implementable artificial neural network models and capable of massively parallel analog processing. In this paper, a novel memristive multilayer CNN (Mm-CNN) model is presented along with its performance analysis and applications. In this new CNN design, the memristor crossbar circuit acts as the synapse, which realizes one signed synaptic weight with a pair of memristors and performs the synaptic weighting compactly and linearly. Moreover, the complex weighted summation is executed in an efficient way with a proper design of Mm-CNN cell circuits. The proposed Mm-CNN has several merits, such as compactness, nonvolatility, versatility, and programmability of synaptic weights. Its performance in several image processing applications is illustrated through simulations.
机译:忆阻器已在电气工程和生物科学领域进行了广泛研究,作为在神经网络中紧凑实现突触功能的一种手段。细胞神经网络(CNN)是最可实现的人工神经网络模型之一,能够进行大规模并行模拟处理。本文提出了一种新型的忆阻多层CNN(Mm-CNN)模型及其性能分析和应用。在这种新的CNN设计中,忆阻器纵横开关电路充当突触,它通过一对忆阻器实现一个带符号的突触权重,并紧凑而线性地执行突触权重。此外,通过适当设计Mm-CNN单元电路,可以有效地执行复数加权求和。提出的Mm-CNN具有几个优点,例如紧凑性,非易失性,多功能性和突触权重的可编程性。通过仿真说明了它在几种图像处理应用中的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号